Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method

Kaushik Brahmachari , Sharmila Ghosh , Mina Ray

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 159 -167.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 159 -167. DOI: 10.1007/s13320-012-0062-7
Regular

Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method

Author information +
History +
PDF

Abstract

The admittance loci method plays an important role in the design of multilayer thin film structures. In this paper, admittance loci method has been explored theoretically for sensing of various chemical and biological samples based on surface plasmon resonance (SPR) phenomenon. A dielectric multilayer structure consisting of a Boro silicate glass (BSG) substrate, calcium fluoride (CaF2) and zirconium dioxide (ZrO2) along with different dielectric layers has been investigated. Moreover, admittance loci as well as SPR curves of metal-dielectric multilayer structure consisting of the BSG substrate, gold metal film and various dielectric samples has been simulated in MATLAB environment. To validate the proposed simulation results, calibration curves have also been provided.

Keywords

Admittance loci method / surface plasmon resonance / multilayer structure / thin film

Cite this article

Download citation ▾
Kaushik Brahmachari, Sharmila Ghosh, Mina Ray. Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method. Photonic Sensors, 2012, 3(2): 159-167 DOI:10.1007/s13320-012-0062-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Raether H.. Excitation of plasmons and interband transitions by electrons, 1980, Berlin: Springer-Verlag

[2]

Homola J., Yee S. S., Gauglitz G.. Surface plasmon resonance sensors: review. Sensors and Actuators B, 1999, 54(1–2): 3-15.

[3]

Raether H.. Surface plasmons on smooth and rough surfaces and on gratings, 1988, Berlin: Springer-Verlag

[4]

Otto A.. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik, 1968, 216(4): 398-410.

[5]

Kretschmann E.. Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberfldchenplasmaschwingungen. Zeitschrift für Physik, 1971, 241(4): 313-324.

[6]

Liedberg B., Nylander C., Lunström I.. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983, 4(2): 299-304.

[7]

Homola J., Koudela I., Yee S. S.. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors and Actuators B: Chemical, 1999, 54(1): 16-24.

[8]

Chen Y., Ming H.. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors, 2012, 2(1): 37-49.

[9]

Bera M., Ray M.. Precise detection and signature of biological/chemical samples based on surface plasmon resonance (SPR). Journal of Optics, 2009, 38(4): 232-248.

[10]

Brahmachari K., Ghosh S., Ray M.. Experimental observation of surface plasmon resonance using various geometrical configurations of metal-dielectric interface. presented at the International Symposium on Advances in Nanomaterials, 2010, Kolkata, India: CSIR-Central Glass & Ceramic Research Institute

[11]

S. Ghosh, K. Brahmachari, and M. Ray, “Experimental investigation of surface plasmon resonance using a chemically deposited silver film on a tapered cylindrical glass rod,” presented at the International Conference on Specialty Glass & Optical Fiber: Materials, Technology & Devices, CSIR-Central Glass & Ceramic Research Institute, Kolkata, India, Aug. 4–6, 2011.

[12]

Ghosh S., Brahmachari K., Ray M.. Experimental investigation of surface plasmon resonance using tapered cylindrical light guides with metal-dielectric interface. Journal of Sensor Technology, 2012, 2(1): 48-54.

[13]

Neninger G. G., Tobiška P., Homola J., Yee S. S.. Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 2001, 74(1): 145-151.

[14]

Salamon Z., Macleod H., Tollin G.. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Biophysical Journal, 1997, 73(5): 2791-2797.

[15]

Bera M., Ray M.. Coupled plasmonic assisted progressive multiple resonance for dielectric material characterization. Optical Engineering, 2011, 50(10): 10380-1-103808.

[16]

Macleod H. A.. Thin-Film Optical Filters, 2010 4th ed. New York: CRC Press, Taylor & Francis Group

[17]

Lin C. W., Chen K. P., Su M. C., Lee C. K., Yang C. C.. Bio-plasmonics: nano/micro structure of surface plasmon resonance devices for biomedicine. Optical and Quantum Electronics, 2005, 37(13–15): 1423-1437.

[18]

Lin C. W., Chen K. P., Su M. C., Hsiao T. C., Lee S. S., Lin S., . Admittance loci design method for multilayer surface plasmon resonance devices. Sensors and Actuators B: Chemical, 2006, 117(1): 219-229.

[19]

K. Brahmachari, S. Ghosh, and M. Ray, “Application of admittance loci method in surface plasmon resonance technology for sensing of different chemical and biological samples,” presented at the International Conference on Specialty Glass & Optical Fiber: Materials, Technology & Devices, CSIR-Central Glass & Ceramic Research Institute, Kolkata, India, Aug. 4–6, 2011.

[20]

K. Brahmachari, S. Ghosh, and M. Ray, “Substrate dependence of surface plasmon resonance sensor with a multilayer structure using admittance loci method,” in Proc. of 2nd International Conference on Trends in Optics and Photonics, Kolkata, India, Dec. 7–9, pp. 402–407, 2011.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/