Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing

C. R. Liao , D. N. Wang

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 97 -101.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 97 -101. DOI: 10.1007/s13320-012-0060-9
Review

Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing

Author information +
History +
PDF

Abstract

This paper reviews high temperature sensing applications based on fiber Bragg gratings fabricated by use of femtosecond laser. Type II fiber Bragg gratings fabricated in the silica fiber can sustain up to 1200 °C while that fabricated in the sapphire fiber have the good thermal stability up to 1745 °C.

Keywords

Fiber Bragg grating / femtosecond laser / high temperature sensing / silica fiber / sapphire fiber / microstructured fiber

Cite this article

Download citation ▾
C. R. Liao, D. N. Wang. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photonic Sensors, 2012, 3(2): 97-101 DOI:10.1007/s13320-012-0060-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Glezer E. N., Milosavljevic M., Huang L., Finlay R. J., Her T. H., Callan J. P., Mazur E.. Three-dimensional optical storage inside transparent materials. Optics Letters, 1996, 21(24): 2023-2025.

[2]

Mihailov S. J., Smelser C. W., Lu P., Walker R. B., Grobnic D., Ding H., Henderson G., Unruh J.. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Optics Letters, 2003, 28(12): 995-997.

[3]

Mihailov S. J., Smelser C. W., Grobnic D., Walker R. B., Lu P., Ding H., Unruh J.. Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask. Journal of Lightwave Technology, 2004, 22(1): 94-100.

[4]

Slattery S. A., Nikogosyan D. N., Brambilla G.. Fiber Bragg grating inscription by high intensity femtosecond UV laser light: comparison with other existing methods of fabrication. Journal Optical Society of America: B, 2005, 22(2): 354-361.

[5]

Dragomir A., Nikogosyan D. N., Zagorulko K. A., Kryukov P. G., Dianov E. M.. Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation. Optics Letters, 2003, 28(22): 2171-2173.

[6]

Zagorulko K., Kryukov P., Larionov Yu., Rybaltovsky A., Dianov E., Chekalin S., Matveets Yu., Kompanets V.. Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation. Optics Express, 2004, 12(24): 5996-6001.

[7]

Martinez A., Dubov M., Khrushchev I., Bennion I.. Direct writing of fiber Bragg gratings by femtosecond laser. Electronics Letters, 2004, 40(19): 1170-1172.

[8]

Smelser C., Mihailov S., Grobnic D.. Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask. Optics Express, 2005, 13(14): 5377-5386.

[9]

Grobnic D., Smelser C. W., Mihailov S. J., Walker R. B.. Long-term thermal stability tests at 1000 °C of silica fiber Bragg gratings made with ultrafast laser radiation. Measurement Science Technology, 2006, 17(5): 1009-1013.

[10]

Li Y. H., Liao C. R., Wang D. N., Sun T., Grattan K. T. V.. Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses. Optics Express, 2008, 16(26): 21239-21247.

[11]

Liao C. R., Li Y. H., Wang D. N., Sun T., Grattan K. T. V.. Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by femtosecond laser. IEEE Sensors Journal, 2010, 10(11): 1675-1681.

[12]

Li Y. H., Yang M. W., Wang D. N., Lu J., Sun T., Grattan K. T. V.. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Optics Express, 2009, 17(22): 19785-19790.

[13]

Li Y. H., Yang M. W., Liao C. R., Wang D. N., Lu J., Lu P. X.. Prestressed fiber Bragg grating with high temperature stability. Journal of Lightwave Technology, 2011, 29(10): 1555-1559.

[14]

Hoeffgen S. K., Henschel H., Kuhnhenn J., Weinand U., Caucheteur C., Grobnic D., Mihailov S. J.. Comparison of the radiation sensitivity of fiber Bragg grating made by four different manufacturers. IEEE on Transactions Nuclear Science, 2011, 58(3): 906-909.

[15]

Grobnic D., Mihailov S. J., Walker R. B., Smelser C. W.. Self-packaged type II femtosecond IR laser induced fiber Bragg grating for temperature applications up to 1000 °C. Proc. SPIE, 2011, 7753, 77530J.

[16]

Grobnic D., Mihailov S. J., Smelser C. W., Ding H. M.. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photonic Technology Letters, 2004, 16(11): 2505-2507.

[17]

Busch M., Ecke W., Latka I., Fischer D., Willsch R., Bartelt H.. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Measurement Science Technology, 2009, 20(11): 115301-1-115301-6.

[18]

Mihailov S. J., Grobnic D., Smelser C. W.. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings. Optics Letters, 2010, 35(16): 2810-2812.

[19]

Fu L. B., Marshall G. D., Bolger J. A., Steinvurzel P., Magi E. C., Withford M. J., Eggleton B. J.. Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibers. Electronics Letters, 2005, 41(11): 638-640.

[20]

Li Y. H., Wang D. N., Jin L.. Single-mode grating reflection in all-solid photonic bandgap fibers inscribed by use of femtosecond laser pulse irradiation through a phase mask. Optics Letters, 2009, 34(8): 1264-1266.

[21]

Jewart C. M., Wang Q. Q., Canning J., Grobnic D., Mihailov S. J., Chen K. P.. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Optics Letters, 2010, 35(9): 1443-1445.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/