Strain sensitivity enhancement in suspended core fiber tapers

Ricardo M. André , Susana O. Silva , Martin Becker , Kay Schuster , M. Rothardt , H. Bartelt , Manuel B. Marques , Orlando Frazão

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 118 -123.

PDF
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (2) : 118 -123. DOI: 10.1007/s13320-012-0059-2
Regular

Strain sensitivity enhancement in suspended core fiber tapers

Author information +
History +
PDF

Abstract

Suspended core fiber tapers with different cross sections (with diameters from 70 μm to 120 μm) are produced by filament heating. Before obtaining the taper, the spectral behavior of the suspended core fiber is a multimode interference structure. When the taper is made, an intermodal interference between a few modes is observed. This effect is clearly visible for low taper core dimensions. Since the core and cladding do not collapse, two taper regions exist, one in the core and the other in the cladding. The cladding taper does not affect the light transmission, only the core is reduced to a microtaper. The spectral response of the microtaper based-suspended core fiber is similar to a beat of two interferometers. The strain is applied to the microtaper, and with the reduction in the transverse area, an increase in sensitivity is observed. When the taper is immersed in a liquid with a different index of refraction or subjected to temperature variations, no spectral change occurs.

Keywords

Optical fiber sensor / taper / microstructured fiber

Cite this article

Download citation ▾
Ricardo M. André, Susana O. Silva, Martin Becker, Kay Schuster, M. Rothardt, H. Bartelt, Manuel B. Marques, Orlando Frazão. Strain sensitivity enhancement in suspended core fiber tapers. Photonic Sensors, 2012, 3(2): 118-123 DOI:10.1007/s13320-012-0059-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Love J. D., Henry W. M., Stewart W. J., Black R. J., Lacroix S., Gonthier F.. Tapered single-mode fibers and devices .I. adiabaticity criteria. IEE Proceeding J, 1991, 138(5): 343-354.

[2]

Birks T. A., Li Y. W.. The shape of fiber tapers. Journal of Lightwave Technology, 1992, 10(4): 432-438.

[3]

Tong L. M., Gattass R. R., Ashcom J. B., He S. L., Lou J. Y., Shen M. Y., Maxwell I., Mazur E.. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816-819.

[4]

Dimmick T. E., Kakarantzas G., Birks T. A., Russell P. S.. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Applied Optics, 1999, 38(33): 6845-6848.

[5]

Brambilla G., Finazzi V., Richardson D. J.. Ultra-low-loss optical fiber nanotapers. Optics Express, 2004, 12(10): 2258-2263.

[6]

Leon-Saval S. G., Birks T. A., Wadsworth W. J., Russell P. S. J., Mason M. W.. Supercontinuum generation in submicron fiber waveguides. Optics Express, 2004, 12(13): 2864-2869.

[7]

Xu F., Horak P., Brambilla G.. Optical microfiber coil resonator refractometric sensor. Optics Express, 2007, 15(12): 7888-7893.

[8]

Chandalia J. K., Eggleton B. J., Windeler R. S., Kosinski S. G., Liu X., Xu C.. Adiabatic coupling in tapered air-silica microstructured optical fiber. IEEE Photonics Technology Letters, 2001, 13(1): 52-54.

[9]

Huntington S. T., Katsifolis J., Gibson B. C., Canning J., Lyytikainen K., Zagari J., Cahill L. W., Love J. D.. Retaining and characterising nano-structure within tapered air-silica structured optical fibers. Optics Express, 2003, 11, 98-104.

[10]

Magi E. C., Steinvurzel P., Eggleton B. J.. Tapered photonic crystal fibers. Optics Express, 2004, 12(5): 776-784.

[11]

Villatoro J., Minkovich V. P., Monzón-Hernández D.. Temperature-independent strain sensor made from tapered holey optical fiber. Optics Letters, 2006, 31(3): 305-307.

[12]

Frazao O., Silva S. F. O., Guerreiro A., Santos J. L., Ferreira L. A., Araújo F. M.. Strain sensitivity control of fiber Bragg grating structures with fused tapers. Applied Optics, 2007, 46(36): 8578-8582.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/