PC based optical salinity sensor for different temperatures

Savarimuthu Robinson , Rangaswamy Nakkeeran

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 187 -192.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 187 -192. DOI: 10.1007/s13320-012-0055-6
Regular

PC based optical salinity sensor for different temperatures

Author information +
History +
PDF

Abstract

The homogeneous, intensity modulated salinity sensor using the photonic crystal ring resonator (PCRR) is proposed and designed for monitoring the salinity of the seawater from 0% to 100% (0 g/L to 100 g/L) at 25 °C. The concentration of the salinity in the seawater changes the refractive index of the seawater. The change in the refractive index of the seawater brings the change in the output signal intensity of the sensor as the seawater flows inside the sensor. By detecting the output power and mapping the salinity level, the salinity can be evaluated. The proposed sensor is composed of periodic Si rods embedded in an air host with a circular PCRR placed between the inline quasi waveguides. Approximately, 2.69% of output power reduction is observed for every 5% (5 g/L) increase in the salinity as the seawater has a unique refractive index for each salt level. With this underlying principle, the performance of the sensor is analyzed for different temperatures.

Keywords

Optical sensor / salinity measurement / photonic crystal / refractive index

Cite this article

Download citation ▾
Savarimuthu Robinson, Rangaswamy Nakkeeran. PC based optical salinity sensor for different temperatures. Photonic Sensors, 2011, 2(2): 187-192 DOI:10.1007/s13320-012-0055-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Y., Liao Y. B., Zhang B., Lai S. R.. Monitoring technology of salinity in water with optical fiber sensor. IEEE Journal of Lightwave Technology, 2003, 21(5): 334-1338.

[2]

S. I. Karaaslan and A. B. Tugrul, “New approach to salinity determination and salinity dispersion along bosphorus,” in Eighth International Water Technology Conference (IWTC8 2004), Alexandria, Egypt, pp. 163–173, 2004.

[3]

Zhao Y., Li P. S., Wang C. S., Pu Z. B.. A novel fiber-optic sensor used for small internal curved surface measurement. Sensors and Actuators A, 2000, 86(3): 211-215.

[4]

Zhao Y., Li P. S., Pu Z. B.. Shape measurement based on fiber-optic technique for complex internal surface. Measurement, 2001, 30(4): 289-295.

[5]

Díaz-Herrera N., Esteban O., Navarrete M. C., Le Haitre M., González-Cano A.. In situ salinity measurements in seawater with a fibre-optic probe. Measurement Science and Technology, 2006, 17(8): 2227-2232.

[6]

Zhao Y., Zhang X. Y., Zhao T. T., Yuan B., Zhang S.. Optical salinity sensor system based on fiber-optic array. IEEE Sensors Journal, 2009, 9(9): 1148-1153.

[7]

Shu X., Gwandu B. A. L., Liu Y., Zhang L., Bennion I.. Sampled fiber Bragg grating for simultaneous refractive index and temperature measurement. Optics Letters, 2001, 26(11): 774-776.

[8]

Nguyen L. V., Vasiliev M., Alameh K.. Three-wave fiber Fabry-Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater. IEEE Photonics Technology Letters, 2011, 23(7): 450-452.

[9]

Joannopoulos J. D., Meade R. D., Winn J. N.. Photonic crystal: modeling of flow of light, 1995, Princeton: Princeton Uuniversity Press

[10]

Qiang Z., Zhou W., Soref R. A.. Optical add-drop filters based on photonic crystal ring resonators. Optics Express, 2007, 15(4): 1823-1831.

[11]

Hsiao F. L., Lee C.. Computational study of photonic crystals nano-ring resonator for biochemical sensing. IEEE Sensors Journal, 2010, 10(7): 1185-1191.

[12]

Dorfnera D., Zabel T., Hürlimanna T., Haukea N., Frandsenb L., Ranta U., Abstreitera G., Finleya J.. Photonic crystal nanostructures for optical biosensing applications. Biosensors and Bioelectronics, 2009, 24(12): 3688-3692.

[13]

Mai T. T., Hsiao F. L., Lee C., Xiang W. F., Chen C. C.. Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors. Sensors and Actuators A: Physical, 2011, 165(1): 16-25.

[14]

Silva R. M., Ferreira M. S., Santos J. L., Frazao O.. Nanostrain measurement using chirped bragg grating fabry-perot interferometer. Photonic Sensors, 2012, 2(1): 77-80.

[15]

Yu Q., Zhou X.. Pressure sensor based on the fiber optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 2011, 1(1): 72-83.

[16]

Olyaee S., Dehghani A. A.. High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal. Photonic Sensors, 2012, 2(1): 92-96.

[17]

Habel W. R., Krebber K.. Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sensors, 2011, 1(3): 268-280.

[18]

Abdel Malek F.. Design of a novel left-handed photonic crystal sensor operating in aqueous environment. IEEE Photonics Technology Letters, 2011, 23(3): 188-190.

[19]

Huang S., Jin X., Zhang J., Chen Y., Wang Y., Zhou Z., Ni J.. An optical fiber hydrophone using equivalent phase shift fiber grating for underwater acoustic measurement. Photonic Sensors, 2011, 1(3): 289-294.

[20]

www.nvcc.edu/home/vzabielski/SeawaterChemistryI.pdf.

[21]

Robinson S., Nakkeeran R.. Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik Optics, 2012, 123(5): 451-457.

[22]

Robinson S., Nakkeeran R.. Photonic crystal ring resonator based add-drop filter using Hexagonal rods for CWDM systems. Optoelectronics Letters, 2011, 7(3): 164-166.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/