Analysis and improvement of SNR in FBG sensing system

Delong Kong , Jun Chang , Peijun Gong , Yongning Liu , Boning Sun , Xiangzhi Liu , Pengpeng Wang , Zongliang Wang , Weijie Wang , Yan Zhang

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 148 -157.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 148 -157. DOI: 10.1007/s13320-012-0053-8
Regular

Analysis and improvement of SNR in FBG sensing system

Author information +
History +
PDF

Abstract

The improvement of the signal to noise ratio (SNR) has significant meaning to the fiber Bragg grating (FBG) sensing system. The source of the noise as well as the signal attenuation of the FBG sensing system is analyzed. It is found that optical noise caused by the optical return loss (ORL) is the main source of noises in the system, and the coupler is the main source of attenuation of the signal. The cause of the ORL in fiber-optic elements (such as jumper cables connector and fiber end) is presented. In addition, suggestions to optimize the fiber optical sensing network in order to improve the SNR are presented. Methods to suppress noises caused by the fiber end interfaces of FBGs, including using index-matching fluid, bending fiber pigtails in the way mentioned in this paper and cleaving the slant angle of the fiber interfaces to be 8°, all contribute to the optimized SNR. Besides, the thermo-weld method is suggested to be used for both parallel and serial FBG setups to provide a low insertion loss. The results would be a useful engineering tool to design the high SNR optical sensing system.

Keywords

SNR / return noise / return loss / fiber Bragg grating / reflection of fiber end interface / bending loss

Cite this article

Download citation ▾
Delong Kong, Jun Chang, Peijun Gong, Yongning Liu, Boning Sun, Xiangzhi Liu, Pengpeng Wang, Zongliang Wang, Weijie Wang, Yan Zhang. Analysis and improvement of SNR in FBG sensing system. Photonic Sensors, 2011, 2(2): 148-157 DOI:10.1007/s13320-012-0053-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mendoza E. A., Esterkin Y., Kempen C., Sun Z.. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator. Photonic Sensors, 2011, 1(3): 281-288.

[2]

Obarski G. E., Splett J. D.. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm. JOSA B, 2001, 18(6): 750-761.

[3]

Chen Y. H., Fu Y. T., Shen X. M.. Stray radiaton analysis caused by interior heat radiation in infrared optical system. Optica l Technique, 2006, 32(z1): 73-79.

[4]

Noutsios P. C.. Optical return loss measurements and simulation of an arbitrary array of concatenated reflective elements on field-installed optical links. Journal of Lightwave Technology, 2006, 24(4): 1697-1702.

[5]

Nakazawa M.. Rayleigh backscattering theory for single-mode optical fibers. JOSA, 1983, 73(9): 1175-1180.

[6]

Dai W. J., Zhang H. Y., He Y. Q.. Estimation of optical signal-to-noise ratio and system design in all-optical network. Chinese Journal of Lasers, 2003, 30(12): 1096-1098.

[7]

Marcuse D.. Light transmission optics, 1982, New York: Van Nostrand Reinhold Company

[8]

Li S. Y., Tan X. D., Huang D. H., Yang X. W., Hu H. M.. Analysis of reflection mechanism of ROSA with tilted fiber stub end face. Study on Optical Communications, 2006, 32(6): 58-60.

[9]

Chen S., Feng Y.. Effect of inclined surface of fiber end on high power fiber amplifier. Chinese Journal of Quantum Electronics, 2008, 25(6): 686-691.

[10]

Gambling W. A., Matsumura H., Ragdale C. M.. Curvature and micro-bending losses in single-mode optical fibers. Optical and Quantum Electronics, 1979, 11(1): 43-59.

[11]

Xi C. L.. A novel erbium-doped fiber broadband light source of ring from implement using double pumping. Optical Communication Technology, 2008, 32(12): 14-16.

[12]

Yang J., Zhang T. H., Yang H. Z., Lu Y. Z., Zhang C. P., Sun Y. Y., Xia X. L.. Research on return wave interference of X-type optical fiber coupler. Journal of Optoelectronics Laser, 2003, 14(9): 933-935.

[13]

Whitney J. M., Takami K., Sanders S. T., Okura Y.. Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments. Sensors Journal, 2011, 11(12): 3295-3302.

[14]

Lloyd S. W., Dangui V., Digonnet M. J. F., Fan S. H., Kino G. S.. Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes. Optics Letters, 2010, 35(2): 121-123.

[15]

Xie Y. Y., Nikdast M., Xu J., Zhang W., Li Q., Wu X. W., Ye Y. Y., Wang X., Liu W. C.. Crosstalk noise and bit error rate analysis for optical network-on-chip. Study on Optical Communications, 2006, 32(6): 58-60.

[16]

Xu Y. K.. Research on light amplification panel based on stimulated radiation. Materials Science Forum, 2010, 663–665(344): 344-347.

[17]

Nguyen H. T., Fortier C., Fatome J., Aubin G., Oudar J. L.. A passive all-optical device for 2r regeneration based on the cascade of two high-speed saturable absorbers. Journal of Lightwave Technology, 2011, 29(9): 1319-1325.

[18]

Luis R. S., Teixeira A., Monteiro P.. Optical signal-to-noise ratio estimation using reference asynchronous histograms. Journal of Lightwave Technology, 2009, 27(6): 731-743.

[19]

Li H. Q., Huang Y. Y., Li T. H., Song H. L.. Research on the inserting loss of fiber connector with high power. Optical Communication Technology, 2010, 34(2): 46-48.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/