Tunability of photonic band gaps in one- and two-dimensional photonic crystals based on ZnS particles embedded in TiO2 matrix

Amel Labbani , Abdelmadjid Benghalia

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 180 -186.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 180 -186. DOI: 10.1007/s13320-012-0052-9
Regular

Tunability of photonic band gaps in one- and two-dimensional photonic crystals based on ZnS particles embedded in TiO2 matrix

Author information +
History +
PDF

Abstract

Using the Maxwell-Garnett theory, the evolution of the refractive index of titanium dioxide (TiO2) doped with zinc sulfide (ZnS) particles is presented. The presence of the nano-objects in the host matrix allows us to obtain a new composite material with tunable optical properties. We find that the filling factor of ZnS nanoparticles greatly alters photonic band gaps (PBGs). We have calculated also the photonic band structure for electromagnetic waves propagating in a structure consisting of ZnS rods covered with the air shell layer in 2D hexagonal and square lattices by the finite difference time domain (FDTD) method. The rods are embedded in the TiO2 background medium with a high dielectric constant. Such photonic lattices present complete photonic band gaps (CPBGs). Our results show that the existence of the air shell layer leads to larger complete photonic gaps. We believe that the present results are significant to increase the possibilities for experimentalists to realize a sizeable and larger CPBG.

Keywords

Photonic crystals / photonic band gap / nanoparticles / ZnS / TiO2

Cite this article

Download citation ▾
Amel Labbani, Abdelmadjid Benghalia. Tunability of photonic band gaps in one- and two-dimensional photonic crystals based on ZnS particles embedded in TiO2 matrix. Photonic Sensors, 2011, 2(2): 180-186 DOI:10.1007/s13320-012-0052-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev Lett., 1987, 58(20): 2059-2061.

[2]

John S.. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486-2489.

[3]

Joannopoulos J. D., Johnson S. G., Winn J. N., Meade R. D.. Photonic Crystals: Molding the Flow of Light, 2008, Princeton: Princeton University Press

[4]

Sakoda K.. Optical Properties of Photonic Crystals, 2000, Germany: Springer

[5]

Chrysicopoulou P., Davazoglou D., Trapalis Chr., Kordas G.. Optical properties of very thin (<100 nm) sol-gel TiO2 films. Thin Solid Films, 1998, 323(1–2): 188-193.

[6]

Falcony C., Garcia M., Ortiz A., Alonso J. C.. Luminescent properties of ZnS: Mn films deposited by spray pyrolysis. J. Appl. Phys., 1992, 72(4): 1525-1527.

[7]

Yanagida S., Kawakami H., Midori Y., Kizumoto H., Pac C., Wada Y.. Semiconductor photocatalysis. ZnS-nanocrystallite-catalyzed photooxidation of organic compounds. Bull. Chem. Soc., 1995, 68(7): 1811-1823.

[8]

Park W., King J. S., Neff C. W., Liddell C., Summers C. J.. ZnS-based photonic crystals. Phys. Stat. Sol., 2002, 229(2): 949-960.

[9]

Trifonov T., Marsal L. F., Rodríguez A., Pallarès J., Alcubilla R.. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer. Phys. Rev. B., 2004, 70(19): 195108-1-195108-8.

[10]

Xiao H., Yao D. Z., Wang C. X.. Analysis of the peculiar shift of the low-frequency end of a variable photonic band gap. Appl. Phys. B, 2007, 87(3): 463-467.

[11]

Babin V., Garstecki P., Hołyst R.. Multiple photonic band gaps in the structures composed of core-shell particles. J. Appl. Phys., 2003, 94(7): 4244-4247.

[12]

Pan T., Zhuang F., Li Z. Y.. Absolute photonic band gaps in a two-dimensional photonic crystal with hollow anisotropic rods. Solid State Commun., 2004, 129(8): 501-506.

[13]

Maxwell-Garnett J. C.. Colors in metal glasses and in metallic films. Phil. Trans. R. Soc. A, 1904, 203(359-371): 385-420.

[14]

Bohren C. F., Huffman D. R.. Absorption and scattering of light by small particles, 2004, New York: Wiley-VCH

[15]

Kok M. H., . Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion. Phys. Rev. E, 2005, 72(4): 047601-1-047601-4.

[16]

Palik E. D.. Handbook of Optical Constants of Solids, 1985, New York: Academic Press

[17]

Taflov A., Hagness S. C.. Computational Electro-dynamics:the finite-difference time-domain Method, 2000 2 edition Boston: Artech House Publishers

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/