Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory?

Qi Li , Fengping Yan , Peng Liu , Wanjing Peng , Guolu Yin , Ting Feng

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 158 -165.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 158 -165. DOI: 10.1007/s13320-012-0049-4
Regular

Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory?

Author information +
History +
PDF

Abstract

Based on the full vector complex coupled mode theory, a detailed analysis is made on the transmission spectrum characteristics of tilted long period fiber gratings. New transmission peaks are observed, which are located beside the long wavelength side of each transmission peak in the transmission spectrum of normal long period fiber gratings. The emerging transmission peaks are quite sensitive to both the grating tilted angle and the surrounding refractive index, and the corresponding relationship is discussed. Furthermore, a novel sensing characteristic is investigated about the tilted long period fiber gratings, which is related to the transmission resonant wavelength and peak amplitude.

Keywords

Optical fiber gratings / fiber optic sensors / tilted long period fiber gratings / numerical analysis

Cite this article

Download citation ▾
Qi Li, Fengping Yan, Peng Liu, Wanjing Peng, Guolu Yin, Ting Feng. Analysis of transmission characteristics of tilted long period fiber gratings with full vector complex coupled mode theory?. Photonic Sensors, 2011, 2(2): 158-165 DOI:10.1007/s13320-012-0049-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhatia V., Vengsarkkar A. M.. Optical fiber long-period grating sensors. Optics Letters, 1996, 21(9): 692-694.

[2]

Shu X. W., Zhang L., Bennion I.. Sensitivity characteristics of long-period fiber grating. Journal of Lightwave Technology, 2002, 20(2): 255-266.

[3]

Hill K. O., Malo B., Vineberg K. A., Bilodeau F., Johnson D. C., Skinner I.. Efficient mode conversion in telecommunication fiber using externally written gratings. Electronics Letters, 1990, 26(16): 1270-1272.

[4]

Hocker G. B.. Fiber-optic sensing of pressure and temperature. Applied Optics, 1979, 18(9): 1445-1448.

[5]

Xu M. G., Peekie L., Chow Y. T., Dakin J. P.. Optical in-fiber grating high pressure sensor. Electronics Letters, 1993, 29(4): 398-399.

[6]

Xu M. G., Geiger H., Dakin J. P.. Fiber grating pressure sensor with enhance sensitivity using a glass-bubble housing. Electronics Letters, 1996, 32(2): 128-139.

[7]

Erdogan T.. Fiber grating spectra. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

[8]

Erdogan T., Sipe J. E.. Tilted fiber phase gratings. Journal of the Optical Society of America A, 1996, 13(2): 296-313.

[9]

Erdogan T.. Cladding-mode resonances in short and long period fiber grating filters. Journal of the Optical Society of America A, 1997, 14(8): 1760-1773.

[10]

Lu Y. C., Huang W. P., Jian S. S.. Polarization sensitivities of demodulation techniques for tilted fiber Bragg grating refractometer. Proc. SPIE (Asia Communications and Photonics Conference and Exhibition), 2009, 7630, 76300U.

[11]

Lu Y. C., Huang W. P., Jian S. S.. Full vector complex coupled mode theory for tilted fiber gratings. Optics Express, 2010, 18(2): 713-725.

[12]

Lu Y. C., Yang L., Huang W. P., Jian S. S.. Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry. Journal of Lightwave Technology, 2008, 26(13): 1868-1876.

[13]

Lu Y. C., Yang L., Huang W. P., Jian S. S.. Unified approach for coupling to cladding and radiation modes in fiber Bragg and long-period gratings. Journal of Lightwave Technology, 2009, 27(11): 1461-1468.

[14]

Kashyap R., Wyatt R., Campbell R.. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electronics Letters, 1993, 29(2): 154-156.

[15]

Shao L. Y., Xiong L. Y., Chen C. K., Laronche A., Albert J.. Directional bend sensor based on re-grown tilted fiber Bragg grating. Journal of Lightwave Technology, 2010, 28(18): 2681-2687.

[16]

Chen X., Zhou K., Zhang L., Bennion I.. In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure. IEEE Photonics Technology Letters, 2006, 18(24): 2596-2598.

[17]

Chehura E., James S. W., Tatam R. P.. Temperature and strain discrimination using a single tilted fiber Bragg grating. Optics Communications, 2007, 275(2): 344-347.

[18]

Guo T., Tam H. Y., Krug P. A., Albert J.. Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling. Optics Express, 2009, 17(7): 5736-5742.

[19]

Kashyap R., Wyatt R., Campbell R. J.. Wideband gain flattened erbium fiber amplifier using a photosensitive fiber blazed grating. Electronics Letters, 1993, 29(2): 154-156.

[20]

Lu Y. C., Geng R., Wang C. C., Zhang F., Liu C., Ning T. G., Jian S. S.. Polarization effects in tilted fiber Bragg grating refractometers. Journal of Lightwave Technology, 2009, 28(11): 1677-1684.

[21]

Wu R., Liu Y. Q., Zou J., Chen N., Pang F. F., Wang T. Y.. Fabrication of tilted long-period fiber gratings by CO2 laser. Proc. SPIE, 2011, 8307, 83072D.

[22]

Wang Y. P.. Review of long period fiber gratings written by CO2 laser. Journal of Applied Physics, 2010, 108(8): 081101-1-081101-18.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/