Fiber optic interrogation systems for hypervelocity and low velocity impact studies

D. A. Jackson , M. J. Cole

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 50 -59.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 50 -59. DOI: 10.1007/s13320-011-0040-5
Regular

Fiber optic interrogation systems for hypervelocity and low velocity impact studies

Author information +
History +
PDF

Abstract

The aim of this project was to develop non-contact fiber optic based displacement sensors to operate in the harsh environment of a “light gas gun” (LGG), which can “fire” small particles at velocities ranging from 1 km/s-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the center of the impact to minimize corruption of the data from edge effects and survive the impact. We chose to develop a non-contact “pseudo” confocal intensity sensor, which demonstrated resolution comparable with conventional polyvinylidene fluoride (PVDF) sensors combined with high survivability and low cost. A second sensor was developed based on “fiber Bragg gratings” (FBG) to enable a more detailed analysis of the effects of the impact, although requiring contact with the target the low weight and very small contact area of the FBG had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on carbon fiber composite plates in the LGG and on low velocity impact tests. The particle momentum for the low velocity impact tests was chosen to be similar to that of the particles used in the LGG.

Keywords

Intensity sensor / FBG / hypervelocity impacts / composite / high speed processing

Cite this article

Download citation ▾
D. A. Jackson, M. J. Cole. Fiber optic interrogation systems for hypervelocity and low velocity impact studies. Photonic Sensors, 2011, 2(1): 50-59 DOI:10.1007/s13320-011-0040-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burchell M. J., Cole M. J., McDonnell J. A. M., Zarnecki J. C.. Hypervelocity impact studies using the 2 MV Van de Graaff dust accelerator and two stage light gas gun of the University of Kent at Canterbury. Meas. Sci. Techno., 1999, 10(1): 41-50.

[2]

Burchell M. J., Standen S., Cole M. J., Corsaro R. D., Giovane F., Liou J.-C., Pisacane V., Sadilek A.. Acoustic response of aluminium and Duroid plates to hypervelocity impacts. Int. Impact Eng, 2011, 38(6): 426-433.

[3]

Kearsley A. T., Burchell M. J., Price M.C., Graham G. A., Wozniakiewicz P. J., Cole M. J., Foster N. J., Teslich N.. Interpretation of Wiid 2 dust fine structure: comparison of Stardust aluminium foil craters to the three-dimensional shape of experimental impacts by artificial aggregate particles and meteorite powders. Meteoritics & Planetary Science, 2009, 44(10): 1489-1509.

[4]

Bae J. H., Kim K. H., Hong M. H., Gim C. H., Jhe W.. High-resolution confocal detection of nanometric displacement by use of a 2 × 1 optical fiber coupler. Optics Letters, 2000, 25(3): 1696-1698.

[5]

Meng Yi., Yi W.. Application of a PVDF-based stress gauge in determining dynamic stress-strain curves of concrete under impact testing. Smart Mater. Struct., 2011, 20(6): 065004.

[6]

Kersey A. D., . Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.

[7]

R. L. Idris, K. R. White, J. W. Pate, S. T. Vohra, C. C. Chang, B. A. Danver, and M. A. Davis, “Monitoring and evaluation of an Interstate highway bridge using a network of optical fiber sensors,” in Proceedings of the International workshop on Fiber optic Sensors for Construction materials and bridges, Newark, New Jersey, May 3–6, pp. 148–157, 1998.

[8]

U. Sennhauser, R. Bronnimann, P. Mauron, and M. Nellen. “Reliability of optical fiber and Bragg grating sensors for Bridge monitoring,” in Proceedings of the International workshop on Fiber optic Sensors for Construction materials and bridges, Newark, New Jersey, May 3–6, pp. 117–128, 1998.

[9]

Kersey A. D.. Optical fiber sensor for permanent down-well monitoring applications in the oil and gas industry. IEICE Trans. Electron., 2000, E83-C(3): 400-404.

[10]

Rao Y. J., Webb D. J., Jackson D. A., Zhang L., Bennion I.. Optical in-fiber Bragg grating sensor systems for medical applications. J. Biomed. Opt., 1998, 3(1): 38-44.

[11]

Fisher N. E., Webb D. J., Pannell C. N., Gavrilov L. R., Hand J. W., Zhang L., Bennion I., Jackson D. A.. Ultrasonic field and temperature sensor based on short in-fiber Bragg gratings. Electronics Letters, 1998, 34(11): 1139-1140.

[12]

Propst A., Peters K., Zirkry M.A., Kunzler W., Zhu Z., Wirthlin N., Selfidge R., Schultz S.. Dynamic, full-spectral interrogation of fiber Bragg grating sensors for impact testing of composite laminates. Proc. SPIE, 2009, 7503, 75030G.

[13]

Culshaw B., Thursby G., Betz D., Sorazu B.. The detection of ultrasound using fiber-optic sensors. IEEE Sensors, 2008, 8(7): 1360-1367.

[14]

Jackson D. A.. Dynamic studies of fiber Bragg gratings. Proc. SPIE, Fourth European Workshop on Optical fiber Sensors, 2010, 7653, 76503.

[15]

Isago R., Nakamura K., Ueha S.. A high reading rate FBG sensor system using a high-speed swept light source based on fiber vibrations. Proc. SPIE, 2008, 7004, 700411.

[16]

Jung E. J., Kim C., Jeong M. Y., Kim M. K., Jeon M. Y., Jung W., Chen Z.. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Optics Express, 2007, 16(21): 16552-16559.

[17]

Lee B. C., Oh M. H., Jeon M. Y.. Fiber Bragg grating sensor interrogation with 1.3 μm Fourier domain mode-locked wavelength swept laser. Proc. SPIE, 2009, 7503, 75035F.

[18]

Lee H. D., Jung E.J., Jeong M. Y., Kim C.. Linearized interrogation of FDML FBG sensor system using PMF Sagnac interferometer. Proc. SPIE, 2009, 7503, 750355.

[19]

Rao Y. J., Ribeiro A. B. L., Jackson D. A., Zhang L., Bennion I.. Combined spatial-and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection. Optics Letters, 1995, 20(20): 2149-2151.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/