Research at the University of Kent and subsequent research activities

Kyriacos Kalli

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (4) : 362-381.

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (4) : 362-381. DOI: 10.1007/s13320-011-0039-y
Review

Research at the University of Kent and subsequent research activities

Author information +
History +

Abstract

The author’s research activities undertaken at the Applied Optics Group, the University of Kent at Canterbury are reviewed, during his time there from 1988–1992 and 1994–1996, followed by a summary of recent research. The areas of interest are high finesse ring resonators, tunable optical filters, novel optical fiber grating sensors in glass and polymer, femtosecond laser inscription and micromachining, environmental pollution monitoring, hydrogen activated Pd films on silicon and impurity measurement on silicon wafers.

Keywords

Ring resonators / fiber gratings / tunable optical filters / femtosecond laser / pollution monitoring / thin films / silicon

Cite this article

Download citation ▾
Kyriacos Kalli. Research at the University of Kent and subsequent research activities. Photonic Sensors, 2010, 1(4): 362‒381 https://doi.org/10.1007/s13320-011-0039-y

References

[1]
Kalli K.. Investigation of linear and non-linear optical phenomena using high finesse ring resonators, 1992, UK: the University of Kent
[2]
Kalli K., Culverhouse D., Jackson D. A.. Fiber frequency shifter based upon stimulated Brillouin scattering generation in high finesse ring resonators. Opt. Lett., 1991, 16(19): 1538-1540.
CrossRef Google scholar
[3]
Culverhouse D., Kalli K., Jackson D. A.. Stimulated Brillouin scattering ring resonator laser for SBS gain studies and microwave generation. Elec. Lett., 1991, 2722, 2033-2035.
CrossRef Google scholar
[4]
Kalli K., Jackson D. A.. Investigation and applications of all-fiber Brillouin ring resonator lasers. Fiber & Int. Opt., 1995, 14(4): 303-330.
CrossRef Google scholar
[5]
Kalli K., Jackson D. A.. Ring resonator optical spectrum analyzer with 20 kHz resolution. Opt. Lett., 1992, 17(15): 1090-1092.
CrossRef Google scholar
[6]
K. Kalli, M. Berwick, and D. A. Jackson, “Recent developments of fiber optic components for LDV signals” in Laser Techniques and Applications in Fluid Mechanics: Proceedings of the 6th International Symposium, Lisbon, Portugal, July 20–23, pp. 25–43, 1992.
[7]
Kalli K., Jackson D. A.. Tunable fiber frequency shifter that uses an all-fiber ring resonator. Opt. Lett., 1992, 17(17): 1243-1245.
CrossRef Google scholar
[8]
Kalli K., Jackson D. A.. Analysis of the dynamic response of a ring resonator to a time varying input signal. Opt. Lett., 1993, 18(6): 465-467.
CrossRef Google scholar
[9]
Kalli K., Jackson D. A.. Dynamic response of high resolution ring resonator optical spectrometers to time varying input signals. Fiber & Int. Opt., 1995, 14(3): 211-223.
CrossRef Google scholar
[10]
F. Farahi, K. Kalli, and D. A. Jackson, “An all-fiber ring resonator gyroscope using low coherence length source” presented at Optical Fiber Sensors Conference, OFS-6’ 89, Paris, Sept., 1989.
[11]
Othonos A., Kalli K.. Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing., 1999, London: Artech House Inc.
[12]
Othonos A., Kalli K., Pureur D., Mugnier A.. Venghaus H.. Fiber Bragg gratings. Wavelength Filters for Fiber Optics, 2006, Heidelberg: Springer
[13]
Othonos A., Kalli K.. Nalwa H. S.. Bragg gratings in optical fibers. Handbook of Advanced Electronic and Photonic Materials and Devices, 2000, San Diego: Academic Press
[14]
Brady G. P., Kalli K., Webb D. J., Zhang L., Bennion I., Jackson D. A.. Extended range, coherence tuned dual wavelength interferometry using a superfluorescent fiber source and chirped fiber Bragg gratings. Opt. Comm., 1997, 134(1–6): 341-348.
CrossRef Google scholar
[15]
Brady G. P., Kalli K., Webb D. J., Reekie L., Archambault J. L., Jackson D. A.. Simultaneous interrogation of interferometric and Bragg grating sensors. Opt. Lett., 1995, 20(11): 1340-1342.
CrossRef Google scholar
[16]
Kalli K., Brady G. P., Webb D. J., Zhang L., Bennion I., Jackson D. A.. Wavelength division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks. Opt. Lett., 1995, 20(24): 2544-2546.
CrossRef Google scholar
[17]
Rao Y. J., Kalli K., Brady G. P., Webb D. J., Zhang L., Bennion I., Jackson D. A.. Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection. Elec. Lett., 1995, 31(12): 1009-1010.
CrossRef Google scholar
[18]
Brady G. P., Kalli K., Webb D. J., Reekie L., Archambault J. L., Jackson D. A.. Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings. IEE Proc. in Optoelec., 1997, 144(3): 156-161.
CrossRef Google scholar
[19]
K. Kalli and D. A. Jackson, “A feasibility study into the use of Raman and fluorescence spectroscopy for pollution monitoring of volatile organic compounds in ground water” Submitted to Dr. Charles Shelton, Environmental Research Dept. Shell Research Ltd., 1996.
[20]
D. Sun, K. Kalli, R. May, and R. Claus, “Optical fiber devices, sensors and systems”, Final report submitted to Henry Whitesel, Code 2753, David Taylor Research Center, February, 1993.
[21]
Kuzniz T., Halot D., Mignani A. G., Ciaccheri L., Kalli K., Tur M., Othonos A., Christofides C., Jackson D. A.. Instrumentation for the monitoring of toxic pollutants in water resources by means of neural network analysis of absorption and fluorescence spectra. Sens. & Act. B, 2007, 121(3): 231-237.
CrossRef Google scholar
[22]
Kalli K., Othonos A., Christofides C.. Hydrogen gas detection via photothermal deflection measurements. Rev. Sci. Inst., 1997, 68(9): 3544-3552.
CrossRef Google scholar
[23]
Kalli K., Othonos A., Christofides C., Spetz A., Lundstrőm I.. Photomodulated thermoreflectance detection of hydrogen gas using optically thin palladium film on silicon oxide. Rev. Sci. Inst., 1998, 69(3): 1505-1511.
CrossRef Google scholar
[24]
Christofides C., Othonos A., Kalli K.. Non destructive photothermal radiometric measurements of defects and metallic contaminating impurities on silicon wafers. Crystalline Defects and Contamination III, Electrochemical Society Proc., 2001, 2001–29, 153-165.
[25]
Kalli K., Othonos A., Christofides C., Tardif F.. Non-destructive evaluation of metal contaminated silicon wafers using radiometric measurements. J. Appl.Phys., 1999, 86(6): 3064-3067.
CrossRef Google scholar
[26]
Kalli K., Othonos A., Christofides C.. Characterization of reflectivity inversion, α and β phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates. J. Appl. Phys., 2002, 91(6): 3829-3840.
CrossRef Google scholar
[27]
Christofides C., Kalli K., Othonos A.. Optical response of thin supported palladium films to hydrogen: non-destructive testing for hydrogen detection. Plat. Metals Rev., 1999, 43(4): 155-157.
[28]
Kalli K., Othonos A., Christofides C., Spetz A., Lundstrőm I.. Temperature-induced reflectivity changes and activation of hydrogen sensitive optically thin palladium metal films on silicon oxide. Rev. Sci. Inst., 1998, 69(9): 3331-3338.
CrossRef Google scholar
[29]
Othonos A., Kalli K., Tsai D. P.. Optically thin palladium films on silicon based substrates and nanostructure formation: effects of hydrogen. Appl. Surf. Sci., 2000, 161(1–2): 54-56.
CrossRef Google scholar
[30]
Simpson A. G., Kalli K., Zhou K., Zhang L., Bennion I.. Formation of type IA fiber Bragg gratings in germanosilicate optical fiber. Electron. Lett., 2004, 40(3): 127-133.
CrossRef Google scholar
[31]
A. G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “An idealised method for the fabrication of temperature invariant IA-I strain sensors” presented at Optical Fibre Sensors Conference OFS16, Nara, Japan, 2003.
[32]
Simpson A. G., Kalli K., Zhou K., Zhang L., Bennion I.. Blank beam fabrication of regenerated type IA gratings. Meas. Sci. Technol., 2004, 15(8): 1665-1669.
CrossRef Google scholar
[33]
Kalli K., Simpson G., Zhou K., Zhang L., Bennion I.. Tailoring the temperature and strain coefficients of type I and type IA dual grating sensors — the impact of hydrogenation conditions. Meas. Sci. Technol., 2006, 17(5): 949-954.
CrossRef Google scholar
[34]
A. Faustov, P. Saffari, C. Koutsides, A. Gusarov, M. Wuilpart, P. Mégret, K. Kalli, and L. Zhang, “Highly radiation sensitive type IA FBGs for dosimetry applications” presented at European Conference on Radiation Effects on Component and Systems, Sevilla, Spain, September 19–23, 2011.
[35]
Kalli K., Simpson G., Zhou K., Zhang L., Birkin D., Ellingham T., Bennion I.. Spectral modification of type IA fiber Bragg gratings by high power near infra-red lasers. Meas. Sci. Technol., 2006, 17(5): 968-974.
CrossRef Google scholar
[36]
Smith G. N., Kalli K., Sugden K.. Pal B.. Advances in femtosecond micromachining and inscription of micro and nano photonic devices. Frontiers in Guided Wave Optics and Optoelectronics, 2010, Croatia: InTech, 674.
[37]
Smith G. N., Kalli K., Bennion I., Sugden K.. Demonstration of inscription and ablation of phase masks for the production of 1st, 2nd, and 3rd order FBG gratings using a femtosecond laser. SPIE, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, 2009, 7205, 720511.
CrossRef Google scholar
[38]
Geernaert T., Kalli K., Koutsides C., Komodromos M., Nasilowski T., Urbanczyk W., Wojcik J., Berghmans F., Thienpont H.. Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser. Opt. Lett., 2010, 35(10): 1647-1649.
CrossRef Google scholar
[39]
O’Mahoney K. T., Main A. S., Webb D. J., Martinez A., Flavin D. A.. Implications of high power losses in IR femtosecond laser inscribed fiber Bragg gratings. SPIE, Reliability of Optical Fiber Components, Devices, Systems, and Networks III, 2006, 6193, 61930Z.
CrossRef Google scholar
[40]
Jovanovic N., Thomas J., Williams R. J., Steel M. J., Marshall G. D., Fuerbach A., Nolte S., Tünnermann A., Withford M. J.. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers. Opt. Exp., 2009, 17(8): 6082-6095.
CrossRef Google scholar
[41]
K. Kalli, T. Allsop, C. Koutsides, E. Davies, D. Webb, and L. Zhang, “Femtosecond laser inscription of fiber Bragg gratings with low insertion loss and minor polarization dependence” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP), Karlsruhe, Gernamy, 2010 (paper: BMA3).
[42]
Erdogan T.. Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A, 1997, 14(8): 1760-1773.
CrossRef Google scholar
[43]
Eggleton B. J., Krug P. A., Poladian L., Ouellette F.. Long periodic superstructure Bragg gratings in optical fibers. Elec. Lett., 1994, 30(19): 1620-1622.
CrossRef Google scholar
[44]
Broderick N. G. R., De Sterke C. M.. Theory of grating superstructures. Phys. Rev. E, 1997, 55(3): 3634-3646.
CrossRef Google scholar
[45]
Rao H., Scarmozzino R., Osgood R. M.. A bidirectional beam propagation method for multiple dielectric interfaces. IEEE Phot. Tech. Lett., 1999, 11(7): 830-832.
CrossRef Google scholar
[46]
Koutsides C., Kalli K., Webb D. J., Zhang L.. Characterizing femtosecond laser inscribed Bragg grating spectra. Opt. Exp., 2011, 19(1): 342-352.
CrossRef Google scholar
[47]
Allsop T., Kalli K., Zhou K., Lai Y., Smith G., Dubov M., Webb D. J., Bennion I.. Long period gratings written into a photonic crystal fiber by a femtosecond laser as directional bend sensors. Opt. Comm., 2008, 281(20): 5092-5096.
CrossRef Google scholar
[48]
Dobb H., Kalli K., Webb D. J.. Measured sensitivity of long period gratings in photonic crystal fiber. Opt. Comm., 2006, 260(1): 184-191.
CrossRef Google scholar
[49]
Dobb H., Kalli K., Webb D. J.. Temperature insensitive long period grating sensors in photonic crystal fiber. Elec. Lett., 2004, 40(11): 657-658.
CrossRef Google scholar
[50]
Petrovic J. S., Webb D. J., Mezentsev V., Dobb H., Kalli K., Bennion I.. Nondestructive index profiling of long period gratings in photonic crystal fibers. Opt. Quant. Elec., 2006, 38(9–11): 913-920.
[51]
Petrovic J. S., Mezentsev V., Dobb H., Webb D. J., Kalli K., Bennion I.. Multiple period resonances in long period gratings in photonic crystal fibers. Opt. Quant. Elec., 2006, 38(1–3): 209-216.
CrossRef Google scholar
[52]
Petrovic J. S., Dobb H., Mezentsev V., Kalli K., Webb D. J., Bennion I.. Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index. IEEE J. Lightwave Tech., 2007, 25(5): 1306-1312.
CrossRef Google scholar
[53]
Xin W., Shuying C., Zhigang D., Xiaoyang W., Changhai S., Jianping C.. Experimental study of some key issues on fiber-optic interferometric sensors detecting weak magnetic field. IEEE Sens. J., 2008, 8(7): 1173-1179.
CrossRef Google scholar
[54]
Sun L., Jiang S., Marciante J. R.. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Opt. Exp., 2010, 18(6): 5407-5412.
CrossRef Google scholar
[55]
Dinev P. D.. A two-dimensional remote fiber-optic magnetic field and current sensor. Meas. Sci. Tech., 1996, 7(9): 1233-1237.
CrossRef Google scholar
[56]
Smith G. N., Allsop T., Kalli K., Koutsides C., Neal R., Sugden K., Culverhouse P., Bennion I.. Characterisation and performance of a terfenol-D coated femtosecond laser inscribed optical fiber Bragg sensor with a laser ablated microslot for the detection of static magnetic fields. Opt. Exp., 2011, 19(1): 363-370.
CrossRef Google scholar
[57]
Kalli K., Dobb H. L., Webb D. J., Carroll K., Komodromos M., Themistos C., Peng G. D., Fang Q., Boyd I. W.. Electrically tunable Bragg gratings in single mode polymer optical fiber. Opt. Lett., 2007, 32(3): 214-216.
CrossRef Google scholar
[58]
Kalli K., Dobb H. L., Webb D. J., Themistos C., Komodromos M., Peng G. D., Fang Q., Boyd I. W.. Development of electrically tunable Bragg grating filter operating at 1.55 μm in single mode polymer optical fiber. Meas. Sci. Tech., 2007, 18(10): 3155-3164.
CrossRef Google scholar
[59]
Dobb H., Webb D. J., Kalli K., Argyros A., Large M. C. J., Eijkelenborg M. A. v.. Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Opt. Lett., 2005, 30(24): 3296-3298.
CrossRef Google scholar
[60]
Carroll K. E., Zhang C., Webb D. J., Kalli K., Argyros A., Large M. C. J.. Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Exp., 2007, 15(14): 8844-8850.
CrossRef Google scholar
[61]
Johnson I. P., Kalli K., Webb D. J.. 827 nm Bragg grating sensor in multimode microstructured polymer optical fiber. Elec. Lett., 2010, 46(17): 1217-1218.
CrossRef Google scholar
[62]
Johnson I. P., Yuan W., Stefani A., Nielsen K., Rasmussen H. K., Khan L., Webb D. J., Kalli K., Bang O.. Optical fiber Bragg grating recorded in TOPAS cyclic olefin copolymer. Elec. Lett., 2011, 47(4): 271-272.
CrossRef Google scholar
[63]
Chen X., Zhang C., Webb D. J., Kalli K., Peng G. D.. Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber. IEEE Phot. Tech. Lett., 2010, 22(11): 850-852.
CrossRef Google scholar
[64]
X. Chen, C. Zhang, D. J. Webb, G. D. Peng, and K. Kalli, “Bragg grating in polymer optical fiber for strain, bend and temperature sensing” Meas. Sci. Tech., vol. 21 no. 9, 2010.
[65]
T. D. P. Allsop, R. Neal, E. Davies, C. Mou, P. Bond, S. Rehman, K. Kalli, D. J. Webb, P. Calverhouse, and I. Bennion, “Low refractive index gas sensing using a surface plasmon resonance fiber device” Meas. Sci. Tech., vol. 21, no. 9, 2010.
[66]
Allsop T., Neal R., Mou C., Brown P., Saied S., Rehman S., Kalli K., Webb D. J., Sullivan J., Mapps D., Bennion I.. Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors. Appl. Opt., 2009, 48(2): 276-286.
CrossRef Google scholar
[67]
Allsop T., Neal R., Mou C., Brown P., Rehman S., Kalli K., Webb D. J., Mapps D., Bennion I.. Multilayered coated infra-red surface plasmon resonance fiber sensors for aqueous chemical sensing. Opt. Fib. Tech., 2009, 15(5–6): 477-482.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/