Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer

Ricardo M. Silva , Marta S. Ferreira , José L. Santos , Orlando Frazão

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 77 -80.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 77 -80. DOI: 10.1007/s13320-011-0037-0
Regular

Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer

Author information +
History +
PDF

Abstract

A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the fiber end face, presents an aperiodic behavior due to the CFBG. A laser located in the fringe pattern slope is used to interrogate the sensing head. The optical power parameter is analyzed when strain is applied, for long and short period fringe pattern wavelengths, and sensitivities of −2.87 μW/μɛ and −5.48 μW/μɛ are respectively obtained. This configuration presents a resolution of 70 nɛ.

Keywords

Optical fiber sensor / Fabry-Perot interferometer / chirped fiber Bragg grating

Cite this article

Download citation ▾
Ricardo M. Silva, Marta S. Ferreira, José L. Santos, Orlando Frazão. Nanostrain measurement using chirped Bragg grating Fabry-Perot interferometer. Photonic Sensors, 2011, 2(1): 77-80 DOI:10.1007/s13320-011-0037-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kersey A. D., Berkoff T. A., Morey W. W.. High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett., 1992, 28(3): 236-238.

[2]

Ferreira L. A., Diatzikis E. V., Moreira P. J., Santos J. L., Farahi F.. Application of multimodelaser diodes in the interrogation of fiber Bragg grating sensors. Opt. Fiber Technol., 2000, 6(4): 365-387.

[3]

Arie A., Lissak B., Tur M.. Static fiber-Bragg grating strain sensing using frequency-locked lasers. J. of Lightwave Technol., 1999, 17(10): 1849-1855.

[4]

Erdogan T.. Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A, 1997, 14(8): 1760-1773.

[5]

Du W. C., Tao X. M., Tam H. Y.. Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photon. Technol. Lett., 1999, 11(1): 105-107.

[6]

Silva S. F. O., Frazao O., Caldas P., Santos J. L., Araujo F. M., Ferreira L. A.. Optical fiber refractometer based on a Fabry-Perot interferometer. Opt. Eng., 2008, 47(5): 054403.

[7]

Byron K. C., Sugden K., Bricheno T., Bennion I.. Fabrication of chirped Bragg gratings in photosensitive fiber. Electron. Lett., 1993, 29(18): 1659-1660.

[8]

Mora J., Villatoro J., Diez A., Cruz J. L., Andres M. V.. Tunable chirp in Bragg gratings written in tapered core fibers. Opt. Comm., 2002, 210(1–2): 51-55.

[9]

Williams J. A. R., Bennion I., Sugden K., Doran N. J.. Fiber dispersion compensation using a chirped in-fiber Bragg grating. Electron. Lett., 1994, 30(12): 985-987.

[10]

Xu M. G., Dong L., Reekie L., Tucknott J. A., Cruz J. L.. Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical-fiber. Electron. Lett., 1995, 31(10): 823-825.

[11]

Kim S., Kwon J., Kim S., Lee B.. Temperature-independent strain sensor using a chirped grating partially embedded in a class tube. IEEE Photon. Techn. Lett., 2000, 12(6): 678-680.

[12]

Frazao O., Melo M., Marques P. V. S., Santos J. L.. Chirped Bragg grating fabricated in fused fiber taper for strain-temperature discrimination. Meas. Sci. & Technol., 2005, 16(4): 984-988.

[13]

Kim S., Kim S., Kwon J., Lee B.. Fiber Bragg grating strain sensor demodulator using a chirped fiber grating. IEEE Photon. Technol. Lett., 2001, 13(8): 839-841.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/