Experimental study of perfectly patterned silica-titania optical waveguide

Rimlee Deb Roy , Devika Sil , Sunirmal Jana , Prasanta Kumar Biswas , Shyamal Kumar Bhadra

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 81 -91.

PDF
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 81 -91. DOI: 10.1007/s13320-011-0035-2
Regular

Experimental study of perfectly patterned silica-titania optical waveguide

Author information +
History +
PDF

Abstract

Inorganic silica-titania thin films with thicknesses 150 nm–200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force lithography technique. Subsequently grating structure is embossed in green stage. The patterned gel films are subjected to stepwise heat treatment to 500 °C and above in pure oxygen atmosphere in order to achieve major conversion of mixed-gel to oxide optical films which are characterized by Ellipsometry, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) to optimize the fabrication parameters and to get perfectly matched film. Removal of organics and formation of perfectly inorganic silica-titania network at optimized heat treatment in controlled environment are ensured by FTIR spectral study. The difference in refractive indices between the substrate and coated film as calculated theoretically matches exactly with the developed waveguides for operating wavelength (632.8 nm) and the measured optical properties show the planar waveguide behavior of the films.

Keywords

Optical properties / sol-gel technique / thin films / oxides

Cite this article

Download citation ▾
Rimlee Deb Roy, Devika Sil, Sunirmal Jana, Prasanta Kumar Biswas, Shyamal Kumar Bhadra. Experimental study of perfectly patterned silica-titania optical waveguide. Photonic Sensors, 2011, 2(1): 81-91 DOI:10.1007/s13320-011-0035-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Que W., Zhou Y., Lam Y. L., Chan Y. C., Tan H. T., Tan T. H., Kam C. H.. Sol-gel processed silica/titania/ÿ - glycidoxypropyltrimethoxysilane composite materials for photonics applications. J. Electron. Mater., 2000, 29(8): 1052-1058.

[2]

Yoshida M., Prasad P. N.. Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides. Chem. Mater., 1996, 8(1): 235-41.

[3]

Ghatak A., Thyagarajan K.. Optical Electronics, 1989, UK: Cambridge University Press

[4]

Brinker C. J., Hurd A. J.. Fundamentals of sol-gel dip-coating. Journal de Physique III, 1994, 4(7): 1231-1242.

[5]

Waldhausl R., Schnabe B., Dannberg P., Kley E. B., Brauer A., Karthe W.. Efficient coupling into polymer waveguides by gratings. Appl. Opt., 1997, 36(36): 9383-9390.

[6]

Que W., Hu X.. Optical and mechanical properties of sol-gel silica-titania hard optical coatings derived from methyltrimethoxysilane and tetrapropylorthotitanate as precursors. Opt. Mater., 2003, 22(1): 31-37.

[7]

Mizutani R., Oono Y., Matsuoka J., Nasu H., Kamiya K.. Coating of polymethylmethacrylate with transparent SiO2 thin films by a sol-gel method. J. Mater. Sci., 1994, 29(21): 5773-5778.

[8]

Lukowiak A., Dylewicz R., Patela S., Strek W., Maruszewski K.. Optical properties of SiO2-TiO2 thin film waveguides obtained by the sol-gel method and their applications for sensing purposes. Opt. Mat., 2005, 27(9): 1501-1505.

[9]

E. Hild, “Planar wave guides as chemical and biological sensors,” accessed September 2009: http://www.microvacuum.com/pdf/products/biosensor/theory.pdf.

[10]

Yu X., Wang Z., Xing R., Luan S., Han Y.. Solvent assisted capillary force lithography. Polymer, 2005, 46(24): 11099-11103.

[11]

Sirringhaus H., Tessler N., Friend R. H.. Integrated optoelectronic devices based on conjugated polymers. Science, 1998, 280(5370): 1741-1744.

[12]

Tessler N., Harrison N. T., Friend R. H.. High peak brightness polymer light-emitting diodes. Adv. Mater., 1998, 10(1): 64-68.

[13]

Xia Y., Whitesides G. M.. Soft lithography. Annu. Rev. Mater. Sci., 1998, 28(1): 153-184.

[14]

Tiefenthaler K., Lukosz W.. Sensitivity of grating couplers as integrated-optical chemical sensors. J. Opt. Soc. Am. B, 1989, 6(2): 209-220.

[15]

Suh K. Y., Lee H. H.. Capillary force lithography: large-area patterning, self-organization and anisotropic dewetting. Adv. Funct. Mater., 2002, 12(6+7): 405-413.

[16]

Khang D. Y., Lee H. H.. Pressure-assisted capillary force lithography. Adv. Mater., 2004, 16(2): 176-179.

[17]

Lukosz W., Tiefenthaler K.. Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Optics Lett., 1983, 8(10): 537-539.

[18]

Heuberger K., Lukosz W.. Embossing technique for fabricating surface relief gratings on hard waveguides. Appl. Opt., 1986, 25(9): 1499-1504.

[19]

Tiefenthaler K., Lukosz W.. Integrated optical switches and gas sensors. Optics Lett., 1984, 10(4): 137-139.

[20]

Kunz R. E., Dubendorfer J., Morf R. H.. Finite grating depth effects for integrated optical sensors with high sensitivity. Bios. Bioelectron., 1996, 11(6/7): 653-667.

[21]

Kunz R. E.. Gradient effective index waveguide sensors. Sensors. Actuators B, 1993, 11(1–3): 167-176.

[22]

Montagna M., Moser E., Visintainer F., Ferrari M., Zampedri L., Martucci A., Guglielmi M., Ivanda M.. Nucleation of titania nanocrystals in silica titania waveguides. J. Sol. Gel. Sci. Tech., 2003, 26(1–3): 241-244.

[23]

Biswas P. K., Kundu D., Ganguli D.. A sol-gel derived antireflective coating on optical glass for near-infrared applications. J. Mat. Sci. Lett., 1989, 8, 1436-1437.

[24]

Atta A. K., Biswas P. K., Ganguli D.. A sol-gel derived yellow-transmitting coating on glass. J. Non-Cryst. Solids, 1990, 125(3): 202-207.

[25]

Brusatin G., Guglielmi M., Innocenzi P., Martucci A., Battaglin G., Pelli S., Righini G.. Microstructural and optical properties of sol-gel silica-titania waveguides. J. Non-Cryst. Solids, 1997, 220(2–3): 202-209.

[26]

Martins O., Almeida R. M.. Sintering anomaly in silica-titania sol-gel films. J. Sol. Gel. Sci. Tech., 2000, 19(1–3): 651-655.

[27]

Szendro I.. Art and practice to emboss gratings into sol-gel waveguides. Proc. SPIE, 2001, 4284, 80-87.

[28]

Gonuguntla M., Sharma A., Mukherjee R., Subramaniam S. A.. Control of self-organized contact instability and patterning in soft elastic films. Langmuir, 2006, 22(16): 7066-7071.

[29]

Schrijnemakers K., Vansant E. F.. Preparation of titanium oxide supported MCM-48 by the designed dispersion of titanylacetylacetone. J. Porous Mater., 2001, 8(2): 83-90.

[30]

Jana S., Lim M. A., Baek I. C., Kim C. H., Seok S. I.. Non-hydrolytic sol-gel synthesis of epoxysilane-based inorganic hybrid. Mat Chem Phys., 2008, 112(3): 1008-1014.

[31]

Akram D., Ahmad S., Sharmin E., Ahmad S.. Silica reinforced organic-inorganic hybrid polyurethane nanocomposites from sustainable resource. Macromol. Chem. Phys., 2010, 211(4): 412-419.

[32]

Cheng P., Zheng M. P., Jin Y. P., Huang Q., Gu M. Y.. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method. Mater. Lett., 2003, 57(20): 2989-2994.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/