Research following a foundation in the applied optics group at University of Kent

Alan D. Kersey

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (2) : 152 -165.

PDF
Photonic Sensors ›› 2010, Vol. 1 ›› Issue (2) : 152 -165. DOI: 10.1007/s13320-011-0031-6
Review

Research following a foundation in the applied optics group at University of Kent

Author information +
History +
PDF

Abstract

This paper summarizes research activities at University of Kent over the period from September 1981 through November 1984. Subsequent researches undertaken in the US Naval Research Laboratory and two start-up companies are also described.

Keywords

Interferometry / polarization / multiplexing / Bragg gratings

Cite this article

Download citation ▾
Alan D. Kersey. Research following a foundation in the applied optics group at University of Kent. Photonic Sensors, 2010, 1(2): 152-165 DOI:10.1007/s13320-011-0031-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jackson D. A., . Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Opt., 1980, 19(17): 2926-2929.

[2]

Jackson D. A.. A prototype digital phase tracker for the fiber interferometer. J. Phys. E., 1981, 14(11): 1274-1278.

[3]

Kersey A. D., . Pseudeheterodyne detection scheme for optical interferometers. Electron. Letts., 1982, 18(25): 1081-1083.

[4]

Kersey A. D., . A passive compensation scheme suitable for use in the single mode fiber interferometer. Electron. Letts., 1982, 18(9): 392-393.

[5]

Lewin A. C., . Non-contact surface vibration analysis using a monomode fiber optic interferometer incorporating an open air path. J. Phys. E., 1985, 18(7): 604-608.

[6]

Kersey A. D., . Pseudeheterodyne-detection technique for the fiber gyroscope. Electron. Letts., 1984, 20(9): 368-370.

[7]

Corke M., . All-fiber ‘Michelson’ thermometer. Electron. Letts., 1983, 19(13): 471-473.

[8]

Kersey A. D., . High-sensitivity fiber-optic accelerometer. Electron. Letts., 1982, 1813, 559-561.

[9]

Kersey A. D., . Detection of DC and low-frequency AC magnetic fields using an all single-mode fiber magnetometer. Electron. Letts., 1983, 19(13): 469-471.

[10]

Kersey A. D., . Single mode fiber optic magnetometer with DC bias field stabilization. J. Lightwave Technol., 1985, 3(4): 836-840.

[11]

Kersey A. D., Jackson D. A., Corke M.. A simple fiber Fabry-Perot sensor. Optics and Lasers in Engineering, 1984, 5(3): 141-154.

[12]

Corke M., Kersey A. D., Jackson D. A.. Remote temperature sensing using polarization-preserving fiber. Electron. Lett., 1984, 20(2): 67-69.

[13]

Jones J. D. C., Jackson D. A., Corke M., Kersey A. D.. Single mode fiber optic sensors: conventional interferometric, polarimetric and combined devices. Proceedings, Fiber Optics’ 85, 1985, 552, 196-203.

[14]

Corke M., Jones J. D. C., Kersey A. D., Jackson D. A.. Combined Michelson and polarimetric fiber-optic interferometric sensors. Electron. Letts., 1985, 21(4): 148-149.

[15]

Giallorenzi T. G., . Optical fiber sensor technology. IEEE J. Quant. Electron., 1982, 18(4): 626-665.

[16]

Kersey A. D., . Phase compensation scheme suitable for use in single mode fiber interferometer. Electron. Lett., 1982, 18, 392-393.

[17]

Kersey A. D., Dandridge A.. Phase noise reduction in coherence multiplexed interferomeric fiber sensors. Electron. Lett., 1986, 22(11): 616-618.

[18]

Berkoff T. A., . Novel analog phase tracker for interferometric fiber optic sensor applications. SPIE Proc. on Fiber Optic and Laser Sensors VIII, 1990, 1367, 53-58.

[19]

Kersey A. D., Moeller R. P.. Open loop fiber optic gryoscope with phase shift nulling signal processing. Electron. Letts., 1990, 26(16): 1251-1253.

[20]

Williams K. J., . Interferometric measurement of low frequency phase noise characteristics of a diode laser-pumped Nd:YAG ring laser. Electron. Letts., 1989, 25(12): 774-776.

[21]

Wanser K., . Intrinsic thermal phase noise limit in optical fiber interferometers. Optics and Photonics News, 1993, 4(12): 37-38.

[22]

Marrone M. J., . Elimination of coherent Rayleigh backscatter induced noise in fiber Michelson interferometers. Electron. Letts., 1992, 28(19): 1803-1804.

[23]

Sheem S. K., Giallorenzi T. G.. Polarization effects on single mode optical fiber sensors. Appl. Phys. Lett., 1979, 35(12): 914-917.

[24]

Lefevre H. C.. Single-mode fiber fractional wave devices and polarization controllers. Electron. Letts., 1980, 16(20): 778-780.

[25]

Kersey A. D., . Dependence of visibility on input polarization in interferometric fiber-optic sensors. Opt. Letts., 1988, 13(4): 288.

[26]

Kersey A. D., . Optimization and stabilization of visibility in interferomeric fiber optic sensors using input polarization control. J. Lightwave Technol., 1988, 6(10): 1599-1609.

[27]

Kersey A. D., Marrone M. J.. Input-polarization scanning techniques for overcoming polarization-induced signal fading in interferometric fiber sensors. Electron. Letts., 1988, 24(15): 931-933.

[28]

Kersey A. D., Marrone M. J., Dandridge A.. Input polarization effects on interferometric fiber-optic sensors. Proc. SPIE, 1988, 949, 170-176.

[29]

Kersey A. D., . Statistical modelling of polarisation induced fading in interferometric fiber sensors. Electron. Letts., 1991, 27(6): 481-483.

[30]

Kersey A. D., . Polarization-insensitive fiber optic Michelson configuration. Electron. Letts., 1991, 26, 518-519.

[31]

Marrone M. J., Kersey A. D.. Visibility limits in fiber optic Michelson interferometer with birefringence compensation. Electron. Letts., 1991, 27(16): 1422-1424.

[32]

Kersey A. D., Dandridge A.. Monomode fiber polarization scrambler. Electron. Letts., 1987, 23(12): 634-636.

[33]

Burns W. K., Kersey A. D.. Fiber-optic gyroscopes with depolarized light. J. Lightwave Technol., 1992, 10(7): 992-999.

[34]

Kersey A. D., . Observation of input polarization induced phase noise in interferometric fiber optic sensors. Opt. Letts., 1988, 13(10): 847-849.

[35]

Kersey A. D., . Analysis of input-polarization-induced phase noise in interferometric fiber-optic sensors and its reduction using polarization scrambling. J. Lightwave Technol., 1990, 8(6): 838-845.

[36]

Davis M. A., . Reflective fiber ring resonator with polarization-independent operation. Opt. Letts., 1993, 18(9): 750-752.

[37]

Kersey A. D., . Time-division multiplexing of interferometric fiber sensors using passive phase-generated carrier interrogation. Opt. Letts., 1987, 12(10): 775-777.

[38]

Kersey A. D., . Multiplexed Mach-Zehnder ladder array with ten elements. Electron. Letts., 1989, 25(19): l298-1299.

[39]

Dandridge A., . Multiplexing of interferometric sensors using phase generated carrier techniques. J. Lightwave Technol., 1987, 5(7): 947-952.

[40]

Kersey A. D., Dandridge A.. Low crosstalk code division multiplexed interferometric array. Electron. Letts., 1992, 28(4): 351-352.

[41]

Kersey A. D., Dandridge A.. Demonstration of a hybrid time/wavelength division multiplexed interferometric fiber sensor array. Electron. Letts., 1991, 27(7): 554-555.

[42]

A. D. Kersey and A. Dandridge, “Fiber optic multisensor networks,” in Proc. Fiber Optic and Laser Sensors VI, Boston, Sept. 6–7, pp. 90–104, 1988.

[43]

Kersey A. D., Dandridge A.. Comparative analysis of multiplexing techniques for interferometric fiber sensors. SPIE Proc. on Fiber Optics, 1989, 1120, 236-246.

[44]

Kersey A. D., Dorsey K. L., Dandridge A.. Demonstration of an eight-element time-division multiplexed interferometric fiber sensor array. Electron. Letts., 1988, 24(11): 689-691.

[45]

Kersey A. D., Dandridge A., Dorsey K. L.. Transmissive serial interferometric fiber sensor array. J. Lightwave Technol., 1989, 7(5): 846-854.

[46]

Kersey A. D., . Cross talk in a fiber-optic Fabry-Perot sensor array with ring reflectors. Opt. Letts., 1989, 14(1): 93-95.

[47]

Kersey A. D., Dandridge A.. Dual wavelength approach to interferometric sensing. SPIE Proc. on Soc. Photo-Opt. Instrum. Eng., 1987, 798, 176-181.

[48]

Kersey A. D., . Two-wavelength fiber gyroscope with wide dynamic range. Electron. Lett., 1986, 22(18): 935-937.

[49]

Kersey A. D., . Differential polarmetric fiber-optic sensor configuration with dual wavelength operation. Appl. Opt., 1989, 28(2): 204-206.

[50]

Wade C. A., . Temperature sensor based on a fiber-optic differential delay RF filter. Electron. Letts., 1988, 24(21): 1305-1306.

[51]

Berkoff T. A., . Interferometric fiber displacement/strain sensor based on source coherence synthesis. Electron. Letts., 1990, 26(7): 452-453.

[52]

Kersey A. D., Bucholtz F., Dandridge A.. New nonlinear phase transduction method for dc measurand interferometric fiber sensors. Electron, Letts., 1986, 22(2): 75-76.

[53]

Bucholtz F., Kersey A. D., Dandridge A.. DC fiber-optic accelerometer with sub-pg sensitivity. Electron. Letts., 1986, 22(9): 45l-453.

[54]

Kersey A. D., Bucholtz F., Sinansky K., Dandridge A.. Interferometric sensors for dc measurands — a new class of fiber sensors. SPIE Proc. on Fiber Optic and Laser Sensors IV, 1986, 718, 198-202.

[55]

Wade C. A., . Multiplexing of sensors based on fiber-optic differential delay RF filters. Electron. Letts., 1988, 24(25): 1557-1559.

[56]

F. Bucholtz, A. D. Kersey, and A. Dandridge, “Multiplexed nonlinear interferometric fiber sensors,” in OFS’86 Tech. Dig., pp. 63–64, 1986.

[57]

Kersey A. D., Dandridge A.. Optical fiber Faraday rotation current sensor with closed-Loop operation. Electron. Lett., 1985, 21(11): 464-466.

[58]

Kersey A. D., Jackson D. A.. Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber. J. Lightwave Technol., 1986, 4(6): 640-644.

[59]

Kersey A. D., . Sensitivity-bandwidth limitations in optical-fiber Faraday-rotation current sensors. International Journal of Optoelectronics, 1988, 3, 323-332.

[60]

Vorha S. T., . Fiber-optic DC and low frequency electric field sensor. Opt. Letts., 1991, 16(18): 1445-1447.

[61]

Marrone M. J., . Fiber-optic magnetic field sensor with an orthoconjugating loop mirror. Opt. Letts., 1993, 18(18): 1556-1558.

[62]

Kersey A. D., . Fiber grating sensors. J. Lightwave Technol., 1997, 15(8): 1442-1463.

[63]

Meltz G., Morey W. W., Glenn W. H.. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Letts., 1989, 14(15): 823-825.

[64]

Melle S. M., Liu K., Measures R. M.. A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technol. Letts., 1992, 4(5): 516-518.

[65]

Kersey A. D., . Multiplexed fiber Bragg grating strain sensor system with a fiber Fabry Perot wavelength filter. Opt. Letts., 1993, 18(16): 1370-1372.

[66]

Davis M. A., . Interrogation of 60 fiber Bragg grating sensors with μstrain resolution capability. Electron. Letts., 1996, 32(15): 1393-1394.

[67]

Davis M. A., Kersey A. D.. Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors. J. Lightwave Technol., 1995, 13(7): 1289-1295.

[68]

A. D. Kersey, M. A. Davis, and T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proc. 11th. Int. Conf. on Optical Fiber Sensors, OFS’96, Sapporo, Japan, May 21, pp. 634–636, 1996.

[69]

Kersey A. D., Berkoff T. A., Morey W. W.. High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection. Electron. Letts., 1992, 28(3): 236-238.

[70]

Kersey A. D., Berkoff T. A., Morey W. W.. Fiber optic Bragg grating strain sensor with drift-compensated high resolution interferometric wavelength shift detection. Opt. Letts., 1993, 18(1): 72-74.

[71]

Kersey A. D., Berkoff T. A.. Fiber optic Bragg grating differential temperature sensor. Photon. Technol. Letts., 1992, 4(10): 1183-1185.

[72]

Fabiny L., Kersey A. D.. Interferometric fiber-optic Doppler velocimeter with high-dynamic range. Photon. Technol. Letts., 1997, 9(1): 79-81.

[73]

Kersey A. D., Morey W. W.. Multi-element Bragg grating based fiber laser strain sensor. Electron. Letts., 1993, 29(11): 964-966.

[74]

Kersey A. D., Morey W. W.. Multiplexed Bragg grating fiber laser strain sensor system with mode-locked interrogation. Electron. Letts., 1993, 29(1): 112-114.

[75]

Koo K. P., Kersey A. D.. Bragg grating based laser sensor systems with interferometric interrogation and wavelength division multiplexing. J. Lightwave Technol., 1995, 13(7): 1243-1249.

[76]

K. P. Koo, et al., “Bragg grating based laser magnetometer,” presented at Postdeadline Presentation, CLEO’95, 1995.

[77]

Koo K. P., Kersey A. D.. Noise and crosstalk of a 4-element serial fiber laser sensor array. Tech. Dig. Conf. Opt. Fiber Commun., San Jose, CA, Feb. 25, 1996, 2, 226.

[78]

Patrick H. J., Williams G. M., Kersey A. D., Pedrazzani J. R., Vengsarkar A. M.. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. Photon. Technol. Letts., 1996, 8(9): 1223-1225.

[79]

M. J. Marrone, A. D. Kersey, and M. A. Davis, “Fiber sensors based on chirped Bragg gratings,” presented at OSA Annual Meeting, Paper WGG5, Rochester, New York, Oct., 1996.

[80]

A. D. Kersey and M. J. Marrone, “Nested interferometric sensors utilizing fiber Bragg grating reflectors,” in Proc. 11th. Int. Conf. on Optical Fiber Sensors, OFS’96, Sapporo, Japan, May, pp. 618–621, 1996.

[81]

Kersey A. D., Davis M. A., Bellemore D. G.. Development of fiber sensors for structural monitoring. Proc. SPIE on Nondestructive Evaluation of Aging Bridges and Highways, 1995, 2456, 262-268.

[82]

Kersey A. D., Davis M. A., Berkoff T. A., Dandridge A., Jones R. T., Tsai T., Cogdell G., Wang G., Havsgârd G. B., Pran K., Knudsen S.. Transient load monitoring on a composite hull ship using distributed fiber optic bragg grating sensors. Proc. SPIE on Smart Structures and Materials, 1997, 3042, 421-430.

[83]

G. Wang, G. Havsgárd, E. Urnes, K. Pran, S. Knudsen, A. D. Kersey, M. A. Davis, T. A. Berkoff, A. Dandridge, R. T. Jones, T. Tsai, and G. Cogdell, “Digital demodulation and signal processing applied to fiber Bragg grating strain sensor arrays in monitoring transient loading effects on ship hulls,” in 12th mt Conf. on Optical Fiber Sensors, pp. 612–615, 1997.

[84]

G. A. Johnson, K. Pran, G. Wang, G. B. Havsgârd, and S. Vohra, “Structural monitoring of a composite hull air cushion catamaran with a multi-channel fiber bragg grating sensor system,” in Structural health monitoring 2000, pp. 190–198, 1999.

[85]

A. D. Kersey, “Optical fiber sensors for downwell monitoring applications in the oil and gas industry,” in Proc. OFS’13, pp. 326–331, 1999.

[86]

A. D. Kersey, et al., “Bragg grating sensor system with spectral response or code division multiplexing,” United States Patent, Patent # 6,489,606, Dec. 3, 2002. 166–186

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/