Fiber laser based hydrophone systems

Asrul Izam Azmi , Ian Leung , Xiaobao Chen , Shaoling Zhou , Qing Zhu , Kan Gao , Paul Childs , Gangding Peng

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (3) : 210 -221.

PDF
Photonic Sensors ›› 2010, Vol. 1 ›› Issue (3) : 210 -221. DOI: 10.1007/s13320-011-0018-3
Regular

Fiber laser based hydrophone systems

Author information +
History +
PDF

Abstract

We report our recent work on distributed feedback fiber laser based hydrophones. Some issues related to sensitivity, such as fiber laser phase condition, demodulation, and packaging, are also discussed. With the development of appropriate digital signal processing (DSP) techniques and packaging designs, an interferometric-type distributed feedback (DFB) fiber laser hydrophone system with acoustic sensitivity of 58.0 dB·re·μPa·Hz−0.5 at 1 kHz or a minimum detectable acoustic pressure below 800 μPa during field test is attained. We have also investigated an intensity-type DFB fiber laser hydrophone system and its performance.

Keywords

Fiber laser / hydrophone / interferometric / acoustic sensitivity

Cite this article

Download citation ▾
Asrul Izam Azmi, Ian Leung, Xiaobao Chen, Shaoling Zhou, Qing Zhu, Kan Gao, Paul Childs, Gangding Peng. Fiber laser based hydrophone systems. Photonic Sensors, 2010, 1(3): 210-221 DOI:10.1007/s13320-011-0018-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cranch G. A., Nash P. J., Kirkendall C. K.. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sens. J., 2003, 3(1): 19-30.

[2]

Kullander F., Vahlberg C.. Towards a thin and lightweight fibre optic towed array sonar. Arch. Acoust., 2005, 30(4): 91-94.

[3]

Nash P. J., Cranch G. A., Hill D. J.. Large scale multiplexed fibre-optic arrays for geophysical applications. Proc. of SPIE, 2000, 4202, 55-65.

[4]

Wong A. C. L., Childs P. A., Peng G. D.. Spectrally-overlapped chirped fibre Bragg grating sensor system for simultaneous two-parameter sensing. Meas. Sci. Technol., 2007, 18(12): 3825-3832.

[5]

Tosi D., Olivero M., Perrone G.. Optical microphone with fiber Bragg grating and signal processing techniques. Proc. of SPIE, 2008, 7098, 70981E.1-70981E.11.

[6]

H. Jun, F. Li, H. Xiao, and Y. Liu, “Fiber Bragg grating sensor array system based on digital phase generated carrier demodulation and reference compensation method,” in Proc. of 1st Asia-Pacific Opt. Fiber Sensors Conf., Beijing, China, Nov. 7–9, pp. 1–4, 2008.

[7]

Cole J. H., Sunderman C., Tveten A. B., Kirkendall C., Dandridge A.. Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors. Proc. 15th Optical Fiber Sensors Tech. Digest, Portland, USA, 2002, 1, 317-320.

[8]

Wang C. C., Anthony D. D., Alan B. T., Yurek A. M.. Very high responsivity fiber optic hydrophones for commercial applications. Proc. of SPIE, 1994, 2360, 360-363.

[9]

Goodman S., Tikhomirov A., Foster S.. Pressure compensated distributed feedback fibre laser hydrophone. Proc. of SPIE, 2008, 7004, 700426.

[10]

Wentao Z., Yuliang L., Fang L., Hao X.. Fiber laser hydrophone based on double diaphragms: theory and experiment. IEEE J. Lightwave Technol., 2008, 26(10): 1349-1352.

[11]

Azmi A. I., Sen D., Peng G. D.. Sensitivity enhancement in composite cavity fiber laser hydrophone. IEEE J. Lightwave Technol., 2010, 28(12): 1844-1850.

[12]

Loh W. H., Laming R. I.. 1.55μm phase-shifted distributed feedback fibre laser. Electron. Lett., 1995, 31(17): 1440-1442.

[13]

Ronnekleiv E.. Frequency and intensity noise of single frequency fiber Bragg grating lasers. Opt. Fiber Technol., 2001, 7(3): 206-235.

[14]

Cranch G. A., Nash P. J.. Webb C. E., Jones J. D. C.. Optical fiber hydrophones. Lasers and Their Applications, 2003 1st ed. Bristol, U.K.: IOP, 1839-1880.

[15]

Varming P., Lauridsen V. C., Povlsen J. H., Jensen J. B., Kristensen M.. Design and fabrication of Bragg grating based DFB fiber lasers operating above 1610 nm. Proc. Optical Fiber Communication Conference, Baltimore, USA, 2000, 3, 17-19.

[16]

Ogita S., Kotaki Y., Kihara K., Matsuda M., Ishikawa H., Imai H.. Dependence of spectral linewidth on cavity length and coupling coefficient in DFB laser. Electron. Lett., 1988, 24(10): 613-614.

[17]

Rønnekleiv E., Hadeler O., Vienne G.. Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections. Opt. Lett., 1999, 24(9): 617-619.

[18]

Stepanov D. Yu., Canning J., Poladian L., Wyatt R., Maxwell G., Smith R., Kashyap R.. Apodized distributed-feedback fiber laser. Opt. Fiber Technol., 1999, 5(2): 209-214.

[19]

Azmi A. I., Sen D., Peng G. D.. Output power and threshold gain of apodized DFB fiber laser. Proc. of SPIE, 2009, 7386, 73860K.1-73860K.11.

[20]

A. I. Azmi and G. D. Peng, “Performance analysis of apodized DFB fiber laser,” in Proc. of Photonics Global Conf., Singapore, Dec. 8–11, pp. 1–4, 2008.

[21]

Dai Y., Chen X., Sun J., Yao Y., Xie S.. Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method. IEEE Photonics Technol. Lett., 2006, 18(18): 1964-1966.

[22]

Liu X.. A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure. IEEE Photonics Technol. Lett., 2007, 19(9): 632-634.

[23]

Tikhomirov A., Foster S.. DFB FL sensor cross-coupling reduction. IEEE J. Lightwave Technol., 2007, 25(2): 533-538.

[24]

Kogelnik H., Shank C. V.. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys., 1972, 43(5): 2327-2335.

[25]

Yariv A.. Optical Electronics in Modern Communications, 1997 5th ed. New York: Oxford University Press Inc., 619-626.

[26]

Schunk N., Petermann K.. Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron., 1988, 24(7): 1242-1247.

[27]

Saito S., Yamamoto Y.. Direct observation of Lorentzian lineshape of semiconductor laser and linewidth reduction with external grating feedback. Electron. Lett., 1981, 17(9): 325-327.

[28]

Goldberg L., Dandridge A., Miles R. O., Giallorenzi T. G., Weller J. F.. Noise characteristics in line-narrowed semiconductor lasers with optical feedback. Electron. Lett., 1981, 17(19): 677-678.

[29]

Wyatt R., Devlin W. J.. 10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range. Electron. Lett., 1983, 19(3): 110-112.

[30]

Mehuys D., Mittelstein M., Yariv A.. Optimised Fabry-Perot (AlGa)As quantum-well lasers tunable over 105 nm. Electron. Lett., 1989, 25(2): 143-145.

[31]

Olsson A., Tang C.. Coherent optical interference effects in external-cavity semiconductor lasers. IEEE J. Quantum Electron., 1981, 17(8): 1320-1323.

[32]

Osmundsen J., Gade N.. Influence of optical feedback on laser frequency spectrum and threshold conditions. IEEE J. Quantum Electron., 1983, 19(3): 465-469.

[33]

Hocker G. B.. Fiber-optic sensing of pressure and temperature. Appl. Opt., 1979, 18(9): 1445-1448.

[34]

Tanaka S., Yokosuka H., Takahashi N.. Temperature-stabilized fiber Bragg grating underwater acoustic sensor array using incoherent light. Proc. of SPIE, 2005, 5855, 699-702.

[35]

Sakoda T., Sonoda Y.. Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor. IEEE T Ultrason. Ferr., 2006, 53(4): 761-766.

[36]

Guan B. O., Tan Y. N., Tam H. Y.. Dual polarization fiber grating laser hydrophone. Opt. Express, 2009, 17.22, 19544-19550.

[37]

Bucaro J. A., Dardy H. D., Carome E. F.. Fiber-optic hydrophone. J. Acoust. Soc. Am., 1977, 62(5): 1302-1304.

[38]

Jackson D. A., Priest R., Dandridge A., Tveten A. B.. Elimination of drift in a single-node optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Optics, 1980, 19(17): 2926-2929.

[39]

Dandridge A., Tveten A., Giallorenzi T.. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE J. Quantum Electron., 1982, 18(10): 1647-1653.

[40]

Bush J., Cekorich A., Kirkendall C. K.. Multichannel interferometric demodulator. Proc. of SPIE, 1997, 3180, 19-29.

[41]

Milnes M., Tikhomirov A., Foster S., Goodman S.. Fast four step digital demodulation for multiplexed fibre laser sensors. Proc. of SPIE, 2008, 7004, 700422.1-700422.5.

[42]

Jackson D. A., Kersey A. D., Corke M., Jones J. D. C.. Pseudoheterodyne detection scheme for optical interferometers. Electron. Lett., 1982, 18(25): 1081-1083.

[43]

Cole J., Danver B., Bucaro J.. Synthetic-heterodyne interferometric demodulation. IEEE J. Quantum Electron., 1982, 18(4): 694-697.

[44]

Huang S. C., Lin H.. Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber. Appl. Opt., 2007, 46(3): 7594-7603.

[45]

Shi Q., . The stability and consistency analysis of optical seismometer system using phase generated carrier in field application. Proc. of SPIE, 2009, 7508, 75081M.1-75081M.9.

[46]

Koo K. P., Tveten A. B., Dandridge A.. Passive stabilization scheme for fiber interferometers using 3×3 fiber directional couplers. Appl. Phys. Lett., 1982, 41(7): 616-618.

[47]

Brown D. A., Cameron C. B., Keolian R. M., Gardner D. L., Garrett S. L.. A symmetric 3×3 coupler based demodulator for fiber optic interferometric sensors. Proc. of SPIE, 1991, 1584, 328-335.

[48]

Hill D. J., Hodder B., De Freitas J., Thomas S. D., Hickey L.. DFB fibre-laser sensor developments. Proc. of SPIE, 2005, 5855, 904-907.

[49]

Cole J. H., Kirkendall C., Dandridge A., Cogdell G., Giallorenzi T. G.. Twenty-five years of interferometric fiber optics acoustic sensors at the Naval Research Laboratory. Washington Academic Science Journal, 2004, 90(3): 40-57.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/