Micro/nanofiber optical sensors

Lei Zhang , Jingyi Lou , Limin Tong

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (1) : 31 -42.

PDF
Photonic Sensors ›› 2010, Vol. 1 ›› Issue (1) : 31 -42. DOI: 10.1007/s13320-010-0022-z
Review

Micro/nanofiber optical sensors

Author information +
History +
PDF

Abstract

As a low-dimensional optical fiber with diameter close to or below the wavelength of light, optical micro/nanofiber (MNF) offers a number of favorable properties for optical sensing, which have been exploited in a variety of sensing applications, including physical, chemical, and biological sensors. In this paper we review the principles and applications of silica, glass, and polymer optical micro/nanofibers for physical and chemical sensing.

Keywords

Optical microfiber / optical nanofiber / tapered fiber / physical sensor / chemical sensor / review

Cite this article

Download citation ▾
Lei Zhang, Jingyi Lou, Limin Tong. Micro/nanofiber optical sensors. Photonic Sensors, 2010, 1(1): 31-42 DOI:10.1007/s13320-010-0022-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leung A., Shankar P. M., Mutharasan R.. A review of fiber-optic biosensors. Sensors and Actuators B: Chemical, 2007, 125(2): 688-703.

[2]

Wolfbeis O. S.. Fiber-Optic Chemical Sensors and Biosensors. Analytical Chemistry, 2008, 80(12): 4269-4283.

[3]

Bures J., Ghosh R.. Power density of the evanescent field in the vicinity of a tapered fiber. Journal of the Optical Society America A, 1999, 16(8): 1992-1996.

[4]

Tong L. M., Lou J. Y., Mazur E.. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025-1035.

[5]

Lou J. Y., Tong L. M., Ye Z. Z.. Modeling of silica nanowires for optical sensing. Optics Express, 2005, 13(6): 2135-2140.

[6]

Tong L. M., Gattass R. R., Ashcom J. B., . Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816-819.

[7]

Brambilla G., Finazzi V., Richardson D. J.. Ultra-low-loss optical fiber nanotapers. Optics Express, 2004, 12(10): 2258-2263.

[8]

Leon-Saval S., Birks T., Wadsworth W., . Supercontinuum generation in submicron fibre waveguides. Optics. Express, 2004, 12(13): 2864-2869.

[9]

Harfenist S. A., Cambron S. D., Nelson E. W., . Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Letters, 2004, 4(10): 1931-1937.

[10]

Sumetsky M., Dulashko Y., Hale A.. Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. Optics Express, 2004, 12(15): 3521-3531.

[11]

Brambilla G., Koizumi E., Feng X., . Compound-glass optical nanowires. Electronics Letters, 2005, 41(7): 400-402.

[12]

Tong L. M., Lou J. Y., Ye Z. Z., . Self-modulated taper drawing of silica nanowires. Nanotechnology, 2005, 16(9): 1445-1448.

[13]

Brambilla G., Xu F., Feng X.. Fabrication of optical fibre nanowires and their optical and mechanical characterisation. Electronics Letters, 2006, 42(9): 517-519.

[14]

Shi L., Chen X. F., Liu H. J., . Fabrication of submicron-diameter silica fibers using electric strip heater. Optics Express, 2006, 14(12): 5055-5060.

[15]

Tong L. M., Hu L. L., Zhang J. J., . Photonic nanowires directly drawn from bulk glasses. Optics Express, 2006, 14(1): 82-87.

[16]

Zhang E. J., Sacher W. D., Poon J. K.. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers. Optics Express, 2010, 18(21): 22593-22598.

[17]

Pricking S., Giessen H.. Tapering fibers with complex shape. Optics Express, 2010, 18(4): 3426-3437.

[18]

Lou J. Y., Tong L. M., Ye Z. Z.. Dispersion shifts in optical nanowires with thin dielectric coatings. Optics Express, 2006, 14(16): 6993-6998.

[19]

Zhai G. Y., Tong L. M.. Roughness-induced radiation losses in optical micro or nanofibers. Optics Express, 2007, 15(21): 13805-13816.

[20]

Kovalenko A. V., Kurashov V. N., Kisil A. V.. Radiation losses in optical nanofibers with random rough surface. Optics Express, 2008, 16(8): 5797-5806.

[21]

Yu H. K., Wang S. S., Fu J., . Modeling bending losses of optical nanofibers or nanowires. Applied Optics, 2009, 48(22): 4365-4369.

[22]

Wang S. S., Hu Z. F., Yu H. K., . Endface reflectivities of optical nanowires. Optics Express, 2009, 17(13): 10881-10886.

[23]

Sumetsky M., Dulashko Y., Fini J. M., . Optical microfiber loop resonator. Applied Physics Letters, 2005, 86(16): 161108.

[24]

Tong L. M., Lou J. Y., Gattass R. R., . Assembly of silica nanowires on silica aerogels for microphotonic devices. Nano Letters, 2005, 5(2): 259-262.

[25]

Jiang X. S., Tong L. M., Vienne G., . Demonstration of optical microfiber knot resonators. Applied Physics Letters, 2006, 88(22): 223501.

[26]

Jiang X. D., Chen Y., Vienne G., . All-fiber add-drop filters based on microfiber knot resonators. Optics Letters, 2007, 32(12): 1710-1712.

[27]

Xu F., Brambilla G.. Manufacture of 3-D microfiber coil resonators. IEEE Photonics Technology Letters, 2007, 19(17–20): 1481-1483.

[28]

Chen Y., Ma Z., Yang Q., . Compact optical short-pass filters based on microfibers. Optics Letters, 2008, 33(21): 2565-2567.

[29]

Vienne G., Coillet A., Grelu P., . Demonstration of a reef knot microfiber resonator. Optics Express, 2009, 17(8): 6224-6229.

[30]

Wang S. S., Hu Z. F., Li Y. H., . All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors. Optics Letters, 2009, 34(3): 253-255.

[31]

Wang P., Zhang L., Yang Z. Y., . Fusion Spliced Microfiber Closed-Loop Resonators. IEEE Photonics Technology Letters, 2010, 22(15): 1075-1077.

[32]

Guo X., Li Y. H., Jiang X. S., . Demonstration of critical coupling in microfiber loops wrapped around a copper rod. Applied Physics Letters, 2007, 91(7): 073512.

[33]

Li Y. H., Tong L. M.. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Optics Letters, 2008, 33(4): 303-305.

[34]

Xu F., Brambilla G.. Embedding optical microfiber coil resonators in Teflon. Optics Letters, 2007, 32(15): 2164-2166.

[35]

Lou N., Jha R., Domínguez-Juárez J. L., . Embedded optical micro/nano-fibers for stable devices. Optics Letters, 2010, 35(4): 571-573.

[36]

White I. M., Oveys H., Fan X.. Liquid-core optical ring-resonator sensors. Optics Letters, 2006, 31(9): 1319-1321.

[37]

Armani A. M., Vahala K. J.. Heavy water detection using ultra-high-Q microcavities. Optics Letters, 2006, 31(12): 1896-1898.

[38]

Keng D., McAnanama S. R., Teraoka I., . Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. Applied Physics Letters, 2007, 91(10): 103902.

[39]

Vollmer F., Braun D., Libchaber A., . Protein detection by optical shift of a resonant microcavity. Applied Physics Letters, 2002, 80(21): 4057-4059.

[40]

Polynkin P., Polynkin A., Peyghambarian N., . Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics Letters, 2005, 30(11): 1273-1275.

[41]

Liang W., Huang Y. Y., Xu Y., . Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 2005, 86(15): 151122.

[42]

Fang X., Liao C. R., Wang D. N.. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters, 2010, 35(7): 1007-1009.

[43]

Tai Y. H., Wei P. K.. Sensitive liquid refractive index sensors using tapered optical fiber tips. Optics Letters, 2010, 35(7): 944-946.

[44]

Xing X., Wang Y., Li B.. Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). Optics Express, 2008, 16(14): 10815-10822.

[45]

Zhu H., Wang Y., Li B.. Tunable Refractive Index Sensor with Ultracompact Structure Twisted by Poly(trimethylene terephthalate) Nanowires. ACS Nano, 2009, 3(10): 3110-3114.

[46]

Shi L., Xu Y. H., Tan W., . Simulation of optical microfiber loop resonators for ambient refractive index sensing. Sensors, 2007, 7(5): 689-696.

[47]

Guo X., Tong L. M.. Supported microfiber loops for optical sensing. Optics Express, 2008, 16(19): 14429-14434.

[48]

Xu F., Horak P., Brambilla G.. Optical microfiber coil resonator refractometric sensor. Optics Express, 2007, 15(12): 7888-7893.

[49]

Xu F., Gilberto B.. Demonstration of a refractometric sensor based on optical microfiber coil resonator. Applied Physics Letters, 2008, 92(10): 101126.

[50]

Xu F., Pruneri V., Finazzi V., . An embedded optical nanowire loop resonator refractometric sensor. Optics Express, 2008, 16(2): 1062-1067.

[51]

Xu F., Brambilla G., Lu Y. Q.. A microfluidic refractometric sensor based on gratings in optical fibre microwires. Optics Express, 2009, 17(23): 20866-20871.

[52]

Wu P. H., Sui C. H., Ye B. Q.. Modelling nanofiber Mach-Zehnder interferometers for refractive index sensors. Journal of Modern Optics, 2009, 56(21): 2335-2339.

[53]

Sumetsky M., Dulashko Y., Fini J. M., . The microfiber loop resonator: Theory, experiment, and application. Journal of Lightwave Technology, 2006, 24(1): 242-250.

[54]

Wu Y., Rao Y. J., Chen Y. H., . Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators. Optics Express, 2009, 17(20): 18142-18147.

[55]

Zeng X., Wu Y., Hou C. L., . A temperature sensor based on optical microfiber knot resonator. Optics Communications, 2009, 282(18): 3817-3819.

[56]

Kou J. L., Feng J., Ye L., . Miniaturized fiber taper reflective interferometer for high temperature measurement. Optics. Express, 2010, 18(13): 14245-14250.

[57]

Li B. B., Wang Q. Y., Xiao Y. F., . On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator. Applied Physics Letters, 2010, 96(25): 251109.

[58]

Scheuer J.. Fiber microcoil optical gyroscope. Optics Letters, 2009, 34(11): 1630-1632.

[59]

Hou C. L., Wu Y., Zeng X., . Novel high sensitivity accelerometer based on a microfiber loop resonator. Optical Engineering, 2010, 49(1): 014402.

[60]

Belal M., Song Z., Jung Y., . Optical fiber microwire current sensor. Optics Letters, 2010, 35(18): 3045-3047.

[61]

Gu F., Zhang L., Yin X., . Polymer single-nanowire optical sensors. Nano Letters, 2008, 8(9): 2757-2761.

[62]

Zhang L., Gu F. X., Lou J. Y., . Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Optics Express, 2008, 16(17): 13349-13353.

[63]

Villatoro J., Luna-Moreno D., Monzon-Hernandez D.. Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sensors and Actuators B-Chemical, 2005, 110(1): 23-27.

[64]

Villatoro J., Monzon-Hernandez D.. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. Optics Express, 2005, 13(13): 5087-5092.

[65]

Gu F. X., Yin X. F., Yu H. K., . Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures. Optics Express, 2009, 17(13): 11230-11235.

[66]

Warken F., Vetsch E., Meschede D., . Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Optics Express, 2007, 15(19): 11952-11958.

[67]

Stiebeiner A., Rehband O., Garcia-Fernandez R., . Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber. Optics Express, 2009, 17(24): 21704-21711.

[68]

Vishnoi G., Goel T. C., Pillai P. K. C.. Spectrophotometric studies of chemical species using tapered core multimode optical fiber. Sensors and Actuators B-Chemical, 1997, 45(1): 43-48.

[69]

Baldini F., Ciaccheri L., Falai A., . Thymol blue immobilized on tapered fibres as an optical transducer for pH sensing. Chemical, Biochemical, and Environmental Fiber Sensors X, 1999, 3540, 28-33.

[70]

Wiejata P. J., Shankar P. M., Mutharasan R.. Fluorescent sensing using biconical tapers. Sensors and Actuators B-Chemical, 2003, 96(1–2): 315-320.

[71]

Waich K., Mayr T., Klimant I.. Microsensors for detection of ammonia at ppb-concentration levels. Measurement Science & Technology, 2007, 18(10): 3195-3201.

[72]

Zamarreno C. R., Bravo J., Goicoechea J., . Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings. Sensors and Actuators B-Chemical, 2007, 128(1): 138-144.

[73]

Sun Y., Fan X.. Analysis of ring resonators for chemical vapor sensor development. Optics Express, 2008, 16(14): 10254-10268.

[74]

Sun Y., Shopova S. I., Frye-Mason G., . Rapid chemical-vapor sensing using optofluidic ring resonators. Optics Letters, 2008, 33(8): 788-790.

AI Summary AI Mindmap
PDF

678

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/