Development of fully-distributed fiber sensors based on Brillouin scattering

Xuping Zhang , Yuangang Lu , Feng Wang , Hao Liang , Yixin Zhang

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (1) : 54 -61.

PDF
Photonic Sensors ›› 2010, Vol. 1 ›› Issue (1) : 54 -61. DOI: 10.1007/s13320-010-0019-7
Review

Development of fully-distributed fiber sensors based on Brillouin scattering

Author information +
History +
PDF

Abstract

Brillouin scattering based optical fiber sensors (BOFS) have the unique advantages over other sensors such as long distance, fully distributed, and multi-parameter sensing. The progresses on the development of BOFS technology in Nanjing University are reviewed. The key technologies to make BOFS with ultra-long distance, high spatial resolution, and fast measuring speed are discussed and realized.

Keywords

Brillouin scattering / fully distributed optical fiber sensor / Brillouin optical time domain reflectometry / strain monitoring

Cite this article

Download citation ▾
Xuping Zhang, Yuangang Lu, Feng Wang, Hao Liang, Yixin Zhang. Development of fully-distributed fiber sensors based on Brillouin scattering. Photonic Sensors, 2010, 1(1): 54-61 DOI:10.1007/s13320-010-0019-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee B.. Review of the present status of optical fiber sensors. Optical Fiber Technology, 2003, 9(2): 57-79.

[2]

Kobyakov A., Kumar S., Chowdhury D. Q., . Design concept for optical fibers with enhanced SBS threshold. Optical Express, 2005, 13(14): 5338-5346.

[3]

Lees G. P., Wait P. C., Cole M. J., Newson T. P.. Advances in Optical Fiber Distributed Temperature Sensing Using the Landau-Placzek Ratio. IEEE Photonics Technology Letters, 1998, 10(1): 126-128.

[4]

Lecoeuche V., Hathaway M. W., Webb D. J., Pannell C. N., Jackson D.A.. 20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering. IEEE Photonics Technology Letters, 2000, 12(10): 1367-1369.

[5]

Wait P. C., Hartog A. H.. Spontaneous Brillouin-Based Distributed Temperature Sensor Utilizing a Fiber Bragg Grating Notch Filter for the Separation of the Brillouin Signal. IEEE Photonics Technology Letters, 2001, 13(5): 508-510.

[6]

Cho Y. T., Alahbabi M., Gunning M. J., Newson T. P.. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification. Optics Letters, 2003, 28(18): 1651-1653.

[7]

Kee H. H., Lees G. P., Newson T. P.. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering. Optics Letters, 2000, 25(10): 695-697.

[8]

Alahbabi M. N., Cho Y. T., Newson T. P.. 100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter. Measurement Science & Technology, 2004, 15(8): 1544-1547.

[9]

Alahbabi M. N., Cho Y. T., Newson T. P.. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. Journal of the Optical Society of America B-Optical Physics, 2005, 22(6): 1321-1324.

[10]

Koyamada Y., Sakairi Y., Takeuchi N., Adachi S.. Novel Technique to Improve Spatial Resolution in Brillouin Optcical Time-Domain Reflectometry. IEEE Photonics Technology letters, 2007, 19(23): 1910-1912.

[11]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “30-km spontaneous-Brillouin distributed temperature sensor employing simplex-coding and low optical input power,” in IEEE Conf. on Sensors 2008, Lecce, Oct. 26–29, pp. 282–285, 2008.

[12]

Wang F., Zhang X., Lu Y., Dong Y.. Improvement of Spatial Resolution for Strain Measurement with Brillouin Optical Time-Domain Reflectometer by Fitting Method Based on Equivalent Optical Pulse. Acta Optica Sinica, 2008, 28(1): 43-49.

[13]

Xuping Zhang, Feng Wang, Yuangang Lu, and Rongrong Dou, “Improvement of spatial resolution of BOTDR by fitting Brillouin frequency shift distribution curve,” presented at the 8th International Conference on Optical Communications and Networks (ICOCN 2009), Beijing, September 15–17, 2009(Invited Paper).

[14]

Zhang X., Wang F., Lu Y.. Fully Distributed Optical Fiber Sensor Based on Brillouin Effect. Laser & Optoelectronics Progress, 2009, 46(11): 60-64.

[15]

Lu Y., Dou R., Zhang X.. Wideband Dectection of Spontaneous Brillouin Scattering Spectrum in Brillouin Optical Time-Domain Reflectometry. Proc. SPIE, 2008, 7158, 715818.

[16]

Wang F., Zhang X., Lu Y., Dou R., Bao X.. Spatial Resolution Analysis for DFT-Based Brillouin Optical Time Domain Reflectometry. Measurement Science & Technology, 2009, 20(2): 025202.

[17]

Y. Lu, H. Liang, and X. Zhang, “Brillouin optical time-domain reflectometry based on Hadamard sequence probe pulse,” presented at the 9th International Conference on Optical Communications and Networks (ICOCN 2010), Nanjing, October 24–26, 2010.

[18]

Zou L., Bao X., Wan Y., Chen L.. Coherent probe-pump-based Brillouin sensor for centimeter-crack detection. Optics Letters, 2005, 30(4): 370-372.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/