Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer

Qingxu Yu , Xinlei Zhou

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (1) : 72 -83.

PDF
Photonic Sensors ›› 2010, Vol. 1 ›› Issue (1) : 72 -83. DOI: 10.1007/s13320-010-0017-9
Review

Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer

Author information +
History +
PDF

Abstract

Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.

Keywords

Pressure measurement / Fabry-Perot interferometer / signal demodulation / downhole monitoring / fiber acoustic sensor

Cite this article

Download citation ▾
Qingxu Yu, Xinlei Zhou. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 2010, 1(1): 72-83 DOI:10.1007/s13320-010-0017-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Robert J. Schroeder, Rogerio T. Ramos, and Tsutomu Yamate, “Fiber optic sensors for oil field services,” in Proc. Fiber Optic Sensor Technology and Applications, Boston, pp. 12–22, 1999.

[2]

Alan D. Kersey and F. K. Didden, “CiDRA: leveraging mulitchannel telecommunications technology for enhanced downhole monitoring capabilities in the oil and gas industry,” in Proc. Fiber Optic Sensor Technology and Applications, Boston, pp. 12–22, 1999.

[3]

Brian Culshaw, W. Craig Michie, and Peter T. Gardiner, “Smart structures: the role of fiber optics,” in Proc. Interferometry’94: Interferometric Fiber Sensing, Warsaw, pp. 134–151, 1994.

[4]

A. Wang, H. Xiao, Russell G. May, J. Wang, W. Zhao, and J. Deng, “Optical fiber sensors for harsh environments,” in International Conference on Sensors and Control Techniques, Wuhan, pp. 2–6, 2000.

[5]

Aref S. H., Latifi H., Zibaii M. I., . Fiber optic Fabry Perot pressure sensor with low sensitivity to temperature changes for downhole application. Optics Communications, 2007, 269(2): 322-330.

[6]

Aref S. H., Zibaii M. I., Latifi H.. An improved fiber optic pressure and temperature sensor for downhole application. Meas. Sci. Technol., 2009, 20(3): 1-6.

[7]

Berthold J. W.. Historical review of microbend fiber-optic sensors. J. Lightwave Technol., 1995, 13(7): 1193-1199.

[8]

Spillman W. B.. Multimode fiber-optic pressure sensor based on the photoelastic effect. Opt. Lett., 1982, 7(8): 388-390.

[9]

Giles I. P., McNeill S., Culshaw B.. A stable remote intensity based fiber sensor. J. Phys., 1985, 18(6): 1124-1126.

[10]

Wang A., He S., Fang X., Jin X., Lin J.. Optical fiber pressure sensor based on photoelastic effect and its applications. J. Lightwave Technol., 1992, 10(10): 1466-1472.

[11]

Hill D. J., Cranch G. A.. Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating. Electron. Lett., 1999, 35(15): 1268-1269.

[12]

Xu M. G., Geiger H., Dakin J. P.. Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett., 1996, 32(2): 128-129.

[13]

Nellen Ph. M., Mauron P., Frank A., Sennhauser U., Bohnert K., Pequignot P., Bodor P., Brändle H.. Reliability of fiber Bragg grating based sensors for downhole applications. Sens. Actuators A: Phys., 2003, 103(13): 364-376.

[14]

Murphy K. A., Gunther M. F., Vengsarkar A. M., Claus R. O.. Quadrature phase-shifted extrinsic Fabry-Perot optical fiber sensors. Opt. Lett., 1991, 24(6): 273-275.

[15]

K. A. Murphy, M. F. Gunther, R. G. May, R. O. Claus, T. A. Tran, J. A. Greene, and P. G. Duncan, “EFPI sensor manufacturing and applications,” in Proc. Smart Structures and Materials 1996: Industrial and Commercial Applications, San Diego, pp. 476–482, 2005.

[16]

A. Wang, “Optical fiber sensors for energy-production and energy-intensive industries,” in Proc. the International Society for Optical Engineering, Shanghai, pp. 377–381, 2002.

[17]

Deng J., Xiao H., Huo W., . Optical fiber sensor-based detection of Partial discharges in power transformers. Optics & Laser Technology, 2001, 33(5): 305-311.

[18]

J. Xu, G. Piekrell, and B. Yu, “Epoxy-free high temperature fiber optic pressure sensors for gas turbine engine applications,” in Proc. Sensors for Harsh Environments, Philadelphia, pp. 1–10, 2004.

[19]

Hill G. C., Melamud R., Declercq F. E., . SU-8MEMS Fabry-Perot pressure sensor. Sens. Actuators A: Phys., 2007, 138(1): 52-62.

[20]

Zhou J., Dasgupta S., Kobayashi H., Wolff J. M., Jackson H. E., Boyd J. T.. Optically interrogated MEMS pressure sensors for propulsion applications. Opt. Eng., 2001, 40(4): 598-604.

[21]

Yang C., Zhao C., Wold L., Kaufman K. R.. Biocompatibility of a physiological pressure sensor. Biosensors and Bioelectronics, 2003, 19(1): 51-58.

[22]

Cibula E., Donlagic D.. Miniature fiber-optic pressure sensor with a polymer diaphragm. Appl. Opt., 2005, 44(14): 2736-2744.

[23]

Zhu Yizheng, G. Pickrell, Wang Xinwei, et al., “Miniature fiber optic pressure sensor for turbine engines,” in Proc. Sensors for harsh Environments, Bellingham, pp. 11–18, 2004.

[24]

Totsu K., Haga Y., Esashi M.. Ultra-miniature fiber-optic pressure sensor using white light interferometry. J. Micromech. Microeng., 2005, 15(1): 71-75.

[25]

Ge Y.-x., Wang M., Chen X.-x., Li M.. A Novel Fabry-Perot MEMS Fiber Pressure Sensor Based on Intensity Demodulation Method Interferometry. Chinese Journal of Sensors and Actuators, 2006, 19(3): 1832-1839.

[26]

Arya V., Vries M. D., Murphy K. A., Wang A., Claus R. O.. Exact analysis of the extrinsic Fabry-Pérot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism. Opt. Fiber Technol., 1995, 1(4): 380-384.

[27]

Lee C. E., Taylor H. F.. Fiber-optic Fabry-Pérot temperature sensor using a low-coherence source. J. Lightw. Technol., 1991, 9(1): 129-134.

[28]

Ning Y. N., Grattan K. T. V., Palmer A. W.. Fibre-optic interferometric systems using low-coherent light sources. Sens. Actuators A: Phys., 1992, 30(3): 181-192.

[29]

Rao Y. J., Jackson D. A.. Recent progress in fibre optic low-coherence interferometry. Meas. Sci. Technol., 1996, 7(7): 981-999.

[30]

Shen F., Wang A.. Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers. Appl. Opt., 2005, 44(25): 5206-5214.

[31]

Rao Y. J.. Demodulation algorithm for spatial-frequency-division-multiplexed fiber-optic Fizeau strain sensor networks. Opt. Lett., 2006, 31(6): 700-702.

[32]

Jiang Y.. Fourier transform white-light interferometry for the measurement of fiber-optic Fabry-Perot interferometric sensors. IEEE Photonics Technol. Lett., 2008, 20(2): 75-77.

[33]

Han M.. Theoretical and Experimental Study of Low-Finesse Extrinsic Fabry-Perot Interferometric Fiber Optic Sensors, 2006, Virginia Tech., USA: Electrical and Computer Engineering

[34]

Wang A., Xiao H., Wang J., Wang Z., Zhao W., May R. G.. Self-calibrated interferometric-intensity based optical fiber sensors. J. Lightw. Technol., 2001, 19(10): 1495-1501.

[35]

Yu B., Wang A., Pickrell G. R.. Analysis of Fiber Fabry-Pérot Interferometric Sensors Using Low-Coherence Light Sources. J. Lightw. Technol., 2006, 24(4): 1758-1767.

[36]

R. G. May, A. Wang, H. Xiao, et al., “SCIIB pressure sensors for oil extraction applications,” in Proc. Harsh Environment Sensors II, Boston, MA, pp. 29–35, 1999.

[37]

Zhang G., Yu Q., Song S.. An investigation of interference/intensity demodulated fiber optic Fabry-Perot cavity sensor. Sens. Actuators A: Phys., 2005, 116(1): 33-38.

[38]

Beard P. C., Mills T. N.. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Pérot interferometer. Appl. Opt., 1996, 35(4): 663-675.

[39]

Dorighi J. F., Krishnaswamy S., Achenbach J.. Stabilization of an embedded fiber optic Fabry-Pérot sensor for ultra-sound detection. IEEE Trans. Ultrason. Ferroelectr. and Freq. Control, 1995, 42(5): 820-824.

[40]

Xu J., Wang X., Cooper K. L., . Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett., 2005, 30(24): 3269-3271.

[41]

Fürstenau N., Schmidt M., Horack H., Goetze W., Schmidt W.. Extrinsic Fabry-Pérot interferometer vibration and acoustic systems for airport ground traffic monitoring. Proc. Inst. Elect. Eng. -Optoelectron., 1997, 144(3): 134-144.

[42]

Yu B., Kim D. W., Deng J., Xiao H., Wang A.. Fiber Fabry-Pérot sensors for partial discharge detection in power transformers. Appl. Opt., 2003, 42(16): 3241-3250.

[43]

Yu B., Wang A.. Grating-assisted demodulation of interferometric optical sensors. Appl. Opt., 2003, 42(34): 6824-6829.

[44]

Xiao H., Deng J. D., Pickrell G., May R. G., Wang A.. Single-crystal sapphire fiber-based strain sensor for high temperature applications. J. Lightw. Technol., 2003, 21(10): 2276-2283.

[45]

S. A. Egorov, A. N. Mamaev, I. G. Likhachiev, Y. A. Ershov, A. S. Voloshin, and E. Nir, “Advanced signal processing method for interferometric fiber-optic sensors with straightforward spectral detection,” in Proc. Sensors and controls for advanced manufacturing, Pittsburgh PA, pp. 44–48, 1997.

[46]

Jing Zhenguo and Yu Qingxu, “White light optical fiber EFPI sensor based on cross-correlation signal processing method,” in Proc. Test and Measurement, pp. 3509–3511, 2005.

[47]

Song S.. Study on the Characteristics and Sensing Applications of Long Period Fiber Gratings, 2006, China: Dalian University of Technology

[48]

Wang Q., Zhang L., Sun C., Yu Q.. Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement. IEEE Sensors Journal, 2008, 8(11): 1879-1883.

[49]

Wang Q.. Study on Key Technologies of Fiber EFPI/FBG Sensing System for Oil Well Logging, 2009, China: Dalian University of Technology

[50]

T., Yang S.. Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor. Appl. Opt., 2007, 46(18): 3862-3867.

[51]

T., Li Z., Xia D., He K., Zhang G.. Asymmetric Fabry-Perot fiber-optic pressure sensor for liquid-level measurement. Review of Scientific Instruments, 2009, 80(3): 033104.

[52]

Qiaoyun Wang, Wenhua Wang, Xinsheng Jiang, and Qingxu Yu, “Diaphragm-based Extrinsic Fabry-Perot Interferometric optical fiber pressure sensor,” presented at Proc. Advanced Optical Manufacturing and Testing Technologies, Dalian, China, 2010.

[53]

Donlagic D., Cibula E.. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. Opt. Lett., 2005, 30(16): 2071-2073.

[54]

Zhu Y., Wang A.. Miniature fiber-optic pressure sensor. IEEE Photo. Technol. Lett., 2005, 17(2): 447-449.

[55]

Abeysinghe D. C., Dasgupta S., Boyd J. T., Jackson H. E.. A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photon. Technol. Lett., 2001, 13(9): 993-995.

[56]

Wang X., Li B., Xiao Z., . An ultra-sensitive optical MEMS sensor for partial discharge detection. J. Micromech. Microeng., 2005, 15(3): 521-527.

[57]

Wang Q., Yu Q.. Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor. Chinese Optics Letters, 2010, 8(3): 266-269.

[58]

Martin P.. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chemical Society Reviews, 2002, 31(4): 201-210.

[59]

Sigrist M., Bartlome R., Marinov D., Rey J., Vogler D., chter H. W.. Trace gas monitoring with infrared laser-based detection schemes. Applied Physics B: Lasers and Optics, 2008, 902, 289-300.

[60]

van Herpen M., Ngai A., Bisson S., Hackstein J., Woltering E., Harren F.. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects. Applied Physics B: Lasers and Optics, 2006, 82(4): 665-669.

[61]

Pushkarsky M., Dunayevskiy I., Prasanna M., Tsekoun A., Go R., Patel C.. High-sensitivity detection of TNT. Proceedings of the National Academy of Sciences, 2006, 103(52): 19630-19634.

[62]

Li J., Gao X., Fang L., Zhang W., Cha H.. Resonant photoacoustic detection of trace gas with DFB diode laser. Optics & Laser Technology, 2007, 39(6): 1144-1149.

[63]

Thony A., Sigrist M.. New developments in CO2-laser photoacoustic monitoring of trace gases. Infrared Physics & Technology, 1995, 36(2): 585-615.

[64]

Peng Y., Zhang W., Li L., Yu Q.. Tunable fiber laser and fiber amplifier based photoacoustic spectrometer for trace gas detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 74(4): 924-927.

AI Summary AI Mindmap
PDF

635

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/