Loop topology based white light interferometric fiber optic sensor network for application of perimeter security

Libo Yuan , Yongtao Dong

Photonic Sensors ›› 2010, Vol. 1 ›› Issue (3) : 260 -267.

PDF
Photonic Sensors ›› 2010, Vol. 1 ›› Issue (3) : 260 -267. DOI: 10.1007/s13320-010-0009-9
Regular

Loop topology based white light interferometric fiber optic sensor network for application of perimeter security

Author information +
History +
PDF

Abstract

A loop topology based white light interferometric sensor network for perimeter security has been designed and demonstrated. In the perimeter security sensing system, where fiber sensors are packaged in the suspended cable or buried cable, a bi-directional optical path interrogator is built by using Michelson or Mach-Zehnder interferometer. A practical implementation of this technique is presented by using an amplified spontaneous emission (ASE) light source and standard single mode fiber, which are common in communication industry. The sensor loop topology is completely passive and absolute length measurements can be obtained for each sensing fiber segment so that it can be used to measure quasi-distribution strain perturbation. For the long distance perimeter monitoring, this technique not only extends the multiplexing potential, but also provides a redundancy for the sensing system. One breakdown point is allowed in the sensor loop because the sensing system will still work even if the embedded sensor loop breaks somewhere.

Keywords

Optical fiber sensors / quasi-distributed sensing system / perimeter security / white light interferometry

Cite this article

Download citation ▾
Libo Yuan, Yongtao Dong. Loop topology based white light interferometric fiber optic sensor network for application of perimeter security. Photonic Sensors, 2010, 1(3): 260-267 DOI:10.1007/s13320-010-0009-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dakin J. P., Pearce J., Strong P.. A novel distributed optical fiber sensing system enabling location of disturbances in a Sagnac loop interferometer. Proc. SPIE, 1987, 838, 325.

[2]

Spammer S. J., Swart P. L., Chtcherbakov A.. Merged Sagnac-Michelson interferometer for distributed disturbance detection. Journal of Lightwave Technology, 1997, 15(6): 972-976.

[3]

M. Szustakowski, W. Ciurapiński, M. Życzkowski, and N. Pałka, “Recent development of fiber optic sensors for perimeter security,” in 35th Annual 2001 International Carnahan Conference on Security Technology, London, October 16–19, pp. 142–148, 2001.

[4]

D. Donlagić and B. Culshaw, “A forward propagation fully distributed microbend sensor system,” in International Conference on Optical Fiber Sensors, Venice, October 11–13, pp. 662–665, 2000.

[5]

Sun Q., Liu D., Liu H., He Y., Yuan J.. Distributed disturbance sensor based on a novel Mach-Zehnder interferometer with a fiber-loop. Proc. SPIE, 2006, 6344, 63440k.

[6]

Lan T., Zhang C., Li L., Luo G., Li C.. Perimeter security system based on fiber optic disturbance sensor. Proc. SPIE, 2007, 6830, 68300J.

[7]

Kersey A. D., Morey W. W.. Multiplexed Brag grating fibre-laser strain-sensor system. Electronics Letters, 1993, 29(1): 112-114.

[8]

Duck G., Ohn M. M.. Distributed Bragg grating sensing with a direct group-delay measurement technique. Optics Letters, 2000, 25(2): 90-92.

[9]

Sensfelder E., Burck J., Ache H. J.. Characterization of a measurement of leakages in tanks and pipelines. Applied Spectroscopy, 1998, 52(10): 1283-1298.

[10]

Horiguchi T., Shimizu K., Kurashima T., Tateda M., Koyamada Y.. Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 1995, 13(7): 1296-1302.

[11]

S. A. Al-Chalabi, B. Culshaw, and D. E. N. Davies, “Partially coherent sources in interferometry,” in Proceedings of 1st International Conference on Optical Fiber Sensors, London, April 26–28, pp. 132–135, 1983.

[12]

Brooks J. L., Wentworth R. H., Youngquist R. C., Tur M., Kim B. Y., Shaw H. J.. Coherence multiplexing of fiber optic interferometric sensors. Journal of Lightwave Technology, 1985, LT-3(5): 1062-1072.

[13]

Gusmeroli V.. High-performance serial array of coherence multiplexed interferometric fiber-optic sensors. Journal of Lightwave Technology, 1993, 11(10): 1681-1686.

[14]

Sorin W. V., Baney D. M.. Multiplexing sensing using optical low-coherence reflectometry. IEEE Photonics Technology Letters, 1995, 7(8): 917-919.

[15]

Inaudi D., Vurpillot S., Lloret S.. In-line coherence multiplexing of displacement sensors, a fiber optic extensometer. Proc. SPIE, 1996, 2718, 251-257.

[16]

Yuan L., Zhou L., Jin W., Yang J.. Low-coherence fiber-optic sensor ring network based on a Mach-Zehnder interrogator. Optics Letters, 2002, 27(11): 894-896.

[17]

Yuan L., Jin W., Zhou L., Hoo Y. H., Demokan S. M.. Enhanced multiplexing capacity of low-coherence reflectometric sensors with a loop topology. IEEE Photonics Technology Letters, 2002, 14(8): 1157-1159.

[18]

Butter C. D., Hocker G. B.. Fiber optic strain gauge. Applied Optics, 1978, 17(18): 2867-2869.

[19]

Yuan L. B.. Optical path automatic compensation low-coherence interferometric fiber optic temperature sensor. Optics & Laser Technology, 1998, 30(1): 33-38.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/