Mechanism and target treatment of primary immunodeficiency diseases with systemic lupus erythematosus-like phenotype

Shan Liu , Zhiyong Zhang , Xuemei Tang , Xiaodong Zhao , Yunfei An

Pediatric Discovery ›› 2024, Vol. 2 ›› Issue (3) : e67

PDF
Pediatric Discovery ›› 2024, Vol. 2 ›› Issue (3) : e67 DOI: 10.1002/pdi3.67
REVIEW

Mechanism and target treatment of primary immunodeficiency diseases with systemic lupus erythematosus-like phenotype

Author information +
History +
PDF

Abstract

Primary immunodeficiency diseases (PIDs) present a heterogeneous group of diseases with aberrant immune response caused by monogenic mutations. Due to the immune dysfunction and dysregulation, PIDs have a wide clinical spectrum such as infections, autoimmunity, autoinflammation, allergy, and malignancies. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized with multiple autoantibodies and multiple organ damage, which could be the predominant phenotype in patients with PIDs. In recent years, the increasing identification of monogenic causes of SLE and PIDs discloses the partially shared genetic background and common pathogenic process. The study of PIDs with SLE-like phenotype paves the way for the exploration of lupus pathogenesis and new perspectives in targeted therapies concurrently.

Keywords

inborn errors of immunity (IEI) / primary immunodeficiency diseases (PIDs) / systemic lupus erythematosus (SLE)

Cite this article

Download citation ▾
Shan Liu, Zhiyong Zhang, Xuemei Tang, Xiaodong Zhao, Yunfei An. Mechanism and target treatment of primary immunodeficiency diseases with systemic lupus erythematosus-like phenotype. Pediatric Discovery, 2024, 2(3): e67 DOI:10.1002/pdi3.67

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TangyeSG, Al-Herz W, BousfihaA, et al. Human inborn errors of immunity:2022 update on the classification from the International union of immunological Societies expert committee. J Clin Immunol. 2022;42(7):1473-1507.

[2]

TsokosGC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110-2121

[3]

CatalinaMD, OwenKA, LabonteAC, Grammer AC, LipskyPE. The pathogenesis of systemic lupus erythematosus: harnessing big data to understand the molecular basis of lupus. J Autoimmun. 2020;110:102359

[4]

MayilyanKR. Complement genetics, deficiencies, and disease associations. Protein & Cell. 2012;3(7):487-496

[5]

GrammatikosAP, TsokosGC. Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus. Trends Mol Med. 2012;18(2):101-108

[6]

StegertM, BockM, TrendelenburgM. Clinical presentation of human C1q deficiency: how much of a lupus? Mol Immunol. 2015;67(1):3-11.

[7]

WalportMJ, DaviesKA, BottoM. C1q and systemic lupus erythematosus. Immunobiology. 1998;199(2):265-285

[8]

SturfeltG, Truedsson L. Complement in the immunopathogenesis of rheumatic disease. Nat Rev Rheumatol. 2012;8(8):458-468

[9]

Stengaard-PedersenK, Thiel S, GadjevaM, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349(6):554-560

[10]

HosszuKK, Valentino A, PeerschkeEI, GhebrehiwetB. SLE: novel postulates for therapeutic options. Front Immunol. 2020;11:583853.

[11]

EkinciZ, OzturkK. Systemic lupus erythematosus with C1q deficiency: treatment with fresh frozen plasma. Lupus. 2018;27(1):134-138

[12]

MehtaP, Norsworthy PJ, HallAE, et al. SLE with C1q deficiency treated with fresh frozen plasma: a 10-year experience. Rheumatol. 2010;49(4):823-824

[13]

MatsumuraR, Mochizuki S, MaruyamaN, et al. Bone marrow transplantation from a human leukocyte antigen-mismatched unrelated donor in a case with C1q deficiency associated with refractory systemic lupus erythematosus. Int J Hematol. 2021;113(2):302-307

[14]

QiuCC, Caricchio R, GallucciS. Triggers of autoimmunity: the role of bacterial infections in the extracellular exposure of lupus nuclear autoantigens. Front Immunol. 2019;10:2608.

[15]

MagnaM, Pisetsky DS. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Therapeut. 2016;38(5):1029-1041.

[16]

Lee-KirschMA. The type I interferonopathies. Annu Rev Med. 2017;68(1):297-315

[17]

HooksJJ, Moutsopoulos HM, GeisSA, StahlNI, DeckerJL, NotkinsAL. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med. 1979;301(1):5-8

[18]

KatoY, ParkJ, TakamatsuH, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis. 2018;77(10):1507-1515

[19]

BaechlerEC, Batliwalla FM, KarypisG, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-2615.

[20]

ReynierF, PetitF, PayeM, et al. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis. PLoS One. 2011;6(10):e24828.

[21]

PsarrasA, Wittmann M, VitalEM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol. 2022;18(10):575-590.

[22]

CrowlJT, GrayEE, PestalK, Volkman HE, StetsonDB. Intracellular nucleic acid detection in autoimmunity. Annu Rev Immunol. 2017;35(1):313-336

[23]

CrowYJ, Hayward BE, ParmarR, et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917-920

[24]

SimpsonSR, Hemphill WO, HudsonT, PerrinoFW. TREX1 -apex predator of cytosolic DNA metabolism. DNA Repair (Amst). 2020;94:102894.

[25]

ChonH, SparksJL, RychlikM, et al. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res. 2013;41(5):3130-3143.

[26]

KretschmerS, WolfC, KonigN, et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis. 2015;74(3):e17.

[27]

CoquelF, SilvaMJ, TécherH, et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature. 2018;557(7703):57-61.

[28]

RiceGI, BondJ, AsipuA, et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet. 2009;41(7):829-832

[29]

VolkmanHE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol. 2014;15(5):415-422

[30]

EisenbergE, Levanon EY. A-to-I RNA editing -immune protector and transcriptome diversifier. Nat Rev Genet. 2018;19(8):473-490.

[31]

Dias JuniorAG, Sampaio NG, RehwinkelJ. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27(1):75-85.

[32]

Al-MayoufSM, Alreefi HA, AlsinanTA, et al. Lupus manifestations in children with primary immunodeficiency diseases: comprehensive phenotypic and genetic features and outcome. Mod Rheumatol. 2021;31(6):1171-1178

[33]

SoniC, ReizisB. Self-DNA at the epicenter of SLE: immunogenic forms, regulation, and effects. Front Immunol. 2019;10:1601

[34]

KonigN, FiehnC, WolfC, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76(2):468-472.

[35]

JeremiahN, NevenB, GentiliM, et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin investigation. 2014;124(12):5516-5520.

[36]

KimH, Sanchez GA, Goldbach-ManskyR. Insights from mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J Mol Med Berl. 2016;94(10):1111-1127.

[37]

YasutomoK, Horiuchi T, KagamiS, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28(4):313-314.

[38]

Al-MayoufSM, SunkerA, AbdwaniR, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet. 2011;43(12):1186-1188.

[39]

Paç KisaarslanA, Witzel M, UnalE, et al. Refractory and fatal presentation of severe autoimmune hemolytic anemia in a child with the DNASE1L3 mutation complicated with an additional DOCK8 variant. J Pediatr Hematol Oncol. 2021;43(3):e452-e456

[40]

OzçakarZB, Foster J, 2nd, Diaz-HortaO, et al. DNASE1L3 mutations in hypocomplementemic urticarial vasculitis syndrome. Arthritis Rheum. 2013;65(8):2183-2189.

[41]

BatuED, Kosukcu C, TaskiranE, et al. Whole exome sequencing in early-onset systemic lupus erythematosus. J Rheumatol. 2018;45(12):1671-1679

[42]

CarbonellaA, Mancano G, GremeseE, et al. An autosomal recessive DNASE1L3-related autoimmune disease with unusual clinical presentation mimicking systemic lupus erythematosus. Lupus. 2017;26(7):768-772

[43]

EkinciRMK, BalciS, OzcanD, Atmis B, BisginA. Monogenic lupus due to DNASE1L3 deficiency in a pediatric patient with urticarial rash, hypocomplementemia, pulmonary hemorrhage, and immune-complex glomerulonephritis. Eur J Med Genet. 2021;64(9):104262

[44]

TusseauM, Lovšin E, SamailleC, et al. DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. J Clin Immunol. 2022;42(6):1310-1320

[45]

Gezgin YildirimD, Bakkaloglu SA. Monogenic lupus caused by mutations in DNASE1L3: a rare cause of systemic lupus erythematosus in children. Scand J Immunol. 2022;95(6):e13162.

[46]

HanDSC, NiM, ChanRWY, et al. The biology of cell-free DNA fragmentation and the roles of DNASE1, DNASE1L3, and DFFB. Am J Hum Genet. 2020;106(2):202-214.

[47]

WatanabeT, TakadaS, MizutaR. Cell-free DNA in blood circulation is generated by DNase1L3 and caspase-activated DNase. Biochem Biophys Res Commun. 2019;516(3):790-795.

[48]

LauschE, Janecke A, BrosM, et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet. 2011;43(2):132-137.

[49]

KaraB, EkinciZ, SahinS, et al. Monogenic lupus due to spondyloenchondrodysplasia with spastic paraparesis and intracranial calcification: case-based review. Rheumatol Int. 2020;40(11):1903-1910.

[50]

ShinoharaML, LuL, BuJ, et al. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol. 2006;7(5):498-506.

[51]

BriggsTA, RiceGI, DalyS, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet. 2011;43(2):127-131.

[52]

ZhangX, Bogunovic D, Payelle-BrogardB, et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature. 2015;517(7532):89-93.

[53]

PerngYC, Lenschow DJ. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol. 2018;16(7):423-439.

[54]

AlsohimeF, Martin-Fernandez M, TemsahMH, et al. JAK inhibitor therapy in a child with inherited USP18 deficiency. N Engl J Med. 2020;382(3):256-265.

[55]

Al-MayoufSM, AkbarL, AlEnaziA, Al-Mousa H. Autosomal recessive ISG15 deficiency underlies type I interferonopathy with systemic lupus erythematosus and inflammatory myositis. J Clin Immunol. 2021;41(6):1361-1364.

[56]

SchrezenmeierE, DornerT. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-166.

[57]

AnJ, Woodward JJ, SasakiT, MinieM, ElkonKB. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol. 2015;194(9):4089-4093

[58]

HjortonK, Hagberg N, IsraelssonE, et al. Cytokine production by activated plasmacytoid dendritic cells and natural killer cells is suppressed by an IRAK4 inhibitor. Arthritis Res Ther. 2018;20(1):238

[59]

FavaA, PetriM. Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun. 2019;96:1-13.

[60]

WozniackaA, LesiakA, NarbuttJ, McCauliffe DP, Sysa-JedrzejowskaA. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus. 2006;15(5):268-275.

[61]

BriandC, Frémond M.-L, BessisD, et al. Efficacy of JAK1/2 inhibition in the treatment of chilblain lupus due to TREX1 deficiency. Ann Rheum Dis. 2019;78(3):431-433

[62]

SanchezGAM, Reinhardt A, RamseyS, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin investigation. 2018;128(7):3041-3052.

[63]

MeesilpavikkaiK, DikWA, SchrijverB, et al. Efficacy of baricitinib in the treatment of chilblains associated with aicardi-goutières syndrome, a type I interferonopathy. Arthritis Rheumatol. 2019;71(5):829-831.

[64]

FrémondM.-L, Hadchouel A, BertelootL, et al. Overview of STING-associated vasculopathy with onset in infancy (SAVI) among 21 patients. J allergy Clin Immunol Pract. 2021;9(2):803-818.e11.

[65]

VanderverA, AdangL, GavazziF, et al. Janus kinase inhibition in the aicardi-goutières syndrome. N Engl J Med. 2020;383(10):986-989.

[66]

WenzelJ, van Holt N, MaierJ, VonnahmeM, BieberT, WolfD. JAK1/2 inhibitor ruxolitinib controls a case of chilblain lupus erythematosus. J investigative dermatology. 2016;136(6):1281-1283.

[67]

MogensenTH. IRF and STAT transcription factors -from basic biology to roles in infection, protective immunity, and primary immunodeficiencies. Front Immunol. 2018;9:3047.

[68]

LiuL, OkadaS, KongXF, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635-1648.

[69]

MalemudCJ. Defective JAK-STAT pathway signaling contributes to autoimmune diseases. Current Pharmacology Reports. 2018;4(5):358-366.

[70]

MekaRR, Venkatesha SH, DudicsS, AcharyaB, Moudgil KD. IL-27-induced modulation of autoimmunity and its therapeutic potential. Autoimmun Rev. 2015;14(12):1131-1141.

[71]

Aldave BecerraJC, Cachay Rojas E. A 3-year-old girl with recurrent infections and autoimmunity due to a gain-of-function mutation: the expanding clinical presentation of primary immunodeficiencies. Frontiers in Pediatrics. 2017;5:55.

[72]

ZimmermanO, Olbrich P, FreemanAF, et al. STAT1 gain-of-function mutations cause high total STAT1 levels with normal dephosphorylation. Front Immunol. 2019;10:1433.

[73]

KiykimA, Charbonnier LM, AkcayA, et al. Hematopoietic stem cell transplantation in patients with heterozygous STAT1 gain-of-function mutation. J Clin Immunol. 2019;39(1):37-44.

[74]

LeidingJW, OkadaS, HaginD, et al. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J allergy Clin Immunol. 2018;141(2):704-717.

[75]

KayaogluB, KasapN, YilmazNS, et al. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J Clin Immunol. 2021;41(4):769-779.

[76]

HaradaT, Kyttaris V, LiY, JuangYT, WangY, TsokosGC. Increased expression of STAT3 in SLE T cells contributes to enhanced chemokine-mediated cell migration. Autoimmunity. 2007;40(1):1-8.

[77]

CrispinJC, OukkaM, BaylissG, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181(12):8761-8766.

[78]

GoyalR, BuluaAC, NikolovNP, Schwartzberg PL, SiegelRM. Rheumatologic and autoimmune manifestations of primary immunodeficiency disorders. Curr Opin Rheumatol. 2009;21(1):78-84.

[79]

GoelRR, NakaboS, DizonBLP, et al. Lupus-like autoimmunity and increased interferon response in patients with STAT3-deficient hyper-IgE syndrome. J allergy Clin Immunol. 2021;147(2):746-749.

[80]

ZhangY, MaCA, LawrenceMG, et al. PD-L1 up-regulation restrains Th17 cell differentiation in STAT3 loss-and STAT1 gain-of-function patients. J Exp Med. 2017;214(9):2523-2533.

[81]

RowshanravanB, Halliday N, SansomDM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58-67.

[82]

LiphausBL, Caramalho I, Rangel-SantosA, SilvaCA, Demengeot J, Carneiro-SampaioMMS. LRBA deficiency: a new genetic cause of monogenic lupus. Ann Rheum Dis. 2020;79(3):427-428.

[83]

SeoE, LeeBH, LeeJH, Park YS, ImHJ. Hematopoietic stem cell transplantation in an infant with dedicator of cytokinesis 8 (DOCK8) deficiency associated with systemic lupus erythematosus: a case report. Medicine (Baltim). 2021;100(13):e20866.

[84]

Yamazaki-NakashimadaM, Zaltzman-Girshevich S, Garcia de la PuenteS, et al. Hyper-IgE syndrome and autoimmunity in Mexican children. Pediatr Nephrol. 2006;21(8):1200-1205.

[85]

JouhadiZ, KhadirK, AilalF, et al. Ten-year follow-up of a DOCK8-deficient child with features of systemic lupus erythematosus. Pediatrics. 2014;134(5):E1458-E1463.

[86]

JanssenE, Morbach H, UllasS, et al. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J allergy Clin Immunol. 2014;134(6):1365-1374.

[87]

Tyndall A Successes and failures of stem cell transplantation in autoimmune diseases. Hematology Am Soc Hematol Educ Program. 2011;2011(1):280-284.

[88]

KennedyDE, ClarkMR. PI3Kδ: too much of a good thing. Nat Immunol. 2018;19(9):910-911.

[89]

RaoVK, Webster S, DalmV, et al. Effective “activated PI3Kdelta syndrome”-targeted therapy with the PI3Kdelta inhibitor leniolisib. Blood. 2017;130(21):2307-2316.

[90]

OkkenhaugK, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3(4):317-330.

[91]

DurandyA, Kracker S. Increased activation of PI3 kinase-δ predisposes to B-cell lymphoma. Blood. 2020;135(9):638-643.

[92]

SogkasG, Adriawan IR, DubrowinskajaN, AtschekzeiF, Schmidt RE. Homeostatic and pathogenic roles of PI3Kδ in the human immune system. Adv Immunol. 2020;146:109-137.

[93]

LucasCL, KuehnHS, ZhaoF, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88-97.

[94]

Suárez-FueyoA, Barber DF, Martínez-AraJ, Zea-MendozaAC, CarreraAC. Enhanced phosphoinositide 3-kinase δ activity is a frequent event in systemic lupus erythematosus that confers resistance to activation-induced T cell death. J Immunol. 2011;187(5):2376-2385.

[95]

LiGM, LiuHM, GuanWZ, et al. A mutation in PIK3CD gene causing pediatric systemic lupus erythematosus: a case report. Medicine (Baltim). 2019;98(18):e15329.

[96]

CoulterTI, CantAJ. The treatment of activated PI3Kδ syndrome. Front Immunol. 2018;9:2043.

[97]

WangY, YangQ, ChenX, et al. Phenotypic characterization of patients with activated PI3Kδ syndrome 1 presenting with features of systemic lupus erythematosus. Genes & Diseases. 2021;8(6):907-917.

[98]

RaoVK, Webster S, DalmVASH, et al. Effective “activated PI3Kδ syndrome”-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood. 2017;130(21):2307-2316.

[99]

BzowskaA, Kulikowska E, ShugarD. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther. 2000;88(3):349-425.

[100]

MarkertML. Purine nucleoside phosphorylase deficiency. Immunodeficiency Rev. 1991;3(1):45-81.

[101]

Al-SaudB, Al Alawi Z, HussainFB, HershfieldM, Alkuraya FS, Al-MayoufSM. A case with purine nucleoside phosphorylase deficiency suffering from late-onset systemic lupus erythematosus and lymphoma. J Clin Immunol. 2020;40(6):833-839.

[102]

SchejterYD, Even-Or E, ShadurB, NaserEddinA, Stepensky P, ZaidmanI. The broad clinical spectrum and transplant results of PNP deficiency. J Clin Immunol. 2020;40(1):123-130.

[103]

MiyamotoA, Nakayama K, ImakiH, et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature. 2002;416(6883):865-869.

[104]

LeiL, Muhammad S, Al-ObaidiM, et al. Successful use of ofatumumab in two cases of early-onset juvenile SLE with thrombocytopenia caused by a mutation in protein kinase C δ. Pediatric rheumatology online journal. 2018;16(1):61.

[105]

NanthapisalS, Omoyinmi E, MurphyC, et al. Early-onset juvenile SLE associated with a novel mutation in protein kinase C δ. Pediatrics. 2017;139(1):e20160781.

[106]

BelotA, KasherPR, TrotterEW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65(8):2161-2171.

[107]

AndreJM, CimazR, RanchinB, et al. Overexpression of the antiapoptotic gene Bfl-1 in B cells from patients with familial systemic lupus erythematosus. Lupus. 2007;16(2):95-100.

[108]

SalzerE, Santos-Valente E, KlaverS, et al. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C δ. Blood. 2013;121(16):3112-3116.

[109]

KiykimA, OgulurI, BarisS, et al. Potentially beneficial effect of hydroxychloroquine in a patient with a novel mutation in protein kinase cδ deficiency. J Clin Immunol. 2015;35(6):523-526.

[110]

MitinN, Rossman KL, DerCJ. Signaling interplay in Ras superfamily function. Curr Biol CB. 2005;15(14):R563-R574.

[111]

OliveiraJB, Bidère N, NiemelaJE, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci USA. 2007;104(21):8953-8958.

[112]

TakagiM, Shinoda K, PiaoJ, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood. 2011;117(10):2887-2890.

[113]

NiemelaJE, LuL, FleisherTA, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117(10):2883-2886.

[114]

OliveiraJB, Bleesing JJ, DianzaniU, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS):report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35-e40.

[115]

WangW, ZhouY, ZhongL, et al. RAS-associated Autoimmune Leukoproliferative disease (RALD) manifested with early-onset SLE-like syndrome: a case series of RALD in Chinese children. Pediatric rheumatology online journal. 2019;17(1):55.

[116]

LeventopoulosG, Denayer E, MakrythanasisP, et al. Noonan syndrome and systemic lupus erythematosus in a patient with a novel KRAS mutation. Clin Exp Rheumatol. 2010;28(4):556-557.

[117]

NevenQ, Boulanger C, BruwierA, et al. Clinical spectrum of ras-associated autoimmune leukoproliferative disorder (RALD). J Clin Immunol. 2021;41(1):51-58.

[118]

VermotA, Petit-Härtlein I, SmithSME, FieschiF. NADPH oxidases (NOX):an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel, Switz. 2021;10(6):890.

[119]

RawatA, Bhattad S, SinghS. Chronic granulomatous disease. Indian J Pediatr. 2016;83(4):345-353.

[120]

SchallerJ. Illness resembling lupus erythematosus in mothers of boys with chronic granulomatous disease. Ann Intern Med. 1972;76(5):747-750.

[121]

RupecRA, Petropoulou T, BelohradskyBH, et al. Lupus erythematosus tumidus and chronic discoid lupus erythematosus in carriers of X-linked chronic granulomatous disease. Eur J Dermatol EJD. 2000;10(3):184-189.

[122]

PrabhatN, Chakravarty K, PattnaikSN, TakkarA, RayS, LalV. Systemic lupus erythematosus with autoimmune neurological manifestations in a carrier of chronic granulomatous disease -a rare presentation. J Neuroimmunol. 2020;343:577229.

[123]

MaddahM, Fazlollahi MR, ShiariR, et al. Lupus erythematosus and chronic granulomatous disease: report of four Iranian patients with AR-CGD and one XL-CGD. Iran J Allergy, Asthma Immunol. 2019;18(4):452-458.

[124]

XieC, ColeT, McLeanC, Su JC. Association between discoid lupus erythematosus and chronic granulomatous disease—report of two cases and review of the literature. Pediatr Dermatol. 2016;33(2):e114-e120.

[125]

ManziS, UrbachAH, McCuneAB, et al. Systemic lupus erythematosus in a boy with chronic granulomatous disease: case report and review of the literature. Arthritis Rheum. 1991;34(1):101-105.

[126]

SchmittCP, Schärer K, WaldherrR, et al. Glomerulonephritis associated with chronic granulomatous disease and systemic lupus erythematosus. Nephrol Dial Transplant official Publ Eur Dialysis Transpl Assoc -Eur Ren Assoc. 1995;10(6):891-895.

[127]

ChouJ, HsuJT, BainterW, Al-Attiyah R, Al-HerzW, GehaRS. A novel mutation in NCF2 associated with autoimmune disease and a solitary late-onset infection. Clin Immunol. 2015;161(2):128-130.

[128]

HahnJ, EulerM, KilgusE, et al. NOX2 mediates quiescent handling of dead cell remnants in phagocytes. Redox Biol. 2019;26:101279.

[129]

KienhöferD, HahnJ, StoofJ, et al. Experimental lupus is aggravated in mouse strains with impaired induction of neutrophil extracellular traps. JCI Insight. 2017;2(10).

[130]

LoodC, BlancoLP, PurmalekMM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146-153.

[131]

KelkkaT, Kienhöfer D, HoffmannM, et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxidants Redox Signal. 2014;21(16):2231-2245.

[132]

BagaitkarJ, HuangJ, ZengMY, et al. NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood. 2018;131(21):2367-2378.

RIGHTS & PERMISSIONS

2024 The Authors. Pediatric Discovery published by John Wiley & Sons Australia, Ltd on behalf of Children’s Hospital of Chongqing Medical University.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/