Diagnostic value of procalcitonin and hemocyte parameters in neonates with bloodstream infection: Role of activated hemocyte-related genes

Yiyi Tao , Qian Li , Huidi Peng , Ningshu Huang

Pediatric Discovery ›› 2024, Vol. 2 ›› Issue (4) : e56

PDF
Pediatric Discovery ›› 2024, Vol. 2 ›› Issue (4) : e56 DOI: 10.1002/pdi3.56
RESEARCH ARTICLE

Diagnostic value of procalcitonin and hemocyte parameters in neonates with bloodstream infection: Role of activated hemocyte-related genes

Author information +
History +
PDF

Abstract

This study aimed to evaluate the diagnostic potential of hemocyte parameters and procalcitonin (PCT) in detecting bloodstream infections (BSI) in neonates and explore the contribution of hemocyte activation-related genes to pediatric sepsis through bioinformatics analysis. A cohort of 419 neonates, categorized as BSI (positive blood culture) and control, underwent comparative analysis of PCT and hemocyte parameters. A predictive model for neonatal BSI was established, demonstrating an impressive area under the receiver ROC curve of 0.968 with remarkable sensitivity (92%) and specificity (87.3%). Hemocyte parameters, including lymphocyte and neutrophil percentages, platelet distribution width (PDW), platelet to lymphocyte ratio (PLR), and PCT, emerged as independent predictors of neonatal BSI. Furthermore, bioinformatics analysis utilizing Gene Expression Omnibus (GEO) datasets yielded significant insights. Differential gene expression (DEGs), gene ontology (GO), pathway enrichment, gene set enrichment analysis (GSEA), and protein– protein interaction (PPI) networks were explored. The differentially expressed genes and hub genes were notably enriched in the activation of neutrophils, lymphocytes, and platelets. Notably, elevated expression levels of SPI1, TYROBP, and FCER1G were observed in pediatric sepsis or septic shock, with positive correlations between SPI1, FCER1G, and TYROBP. In summary, the combination of lymphocyte, PDW, PLR, and PCT effectively diagnosed neonatal BSI. Bioinformatics analysis underscored the pivotal role of activated hemocytes in diagnosing pediatric sepsis, with SPI1, TYROBP, and FCER1G co-expression influencing the disease’s pathophysiology by modulating neutrophil and platelet activity.

Keywords

bloodstream infection / hemocyte parameters / hemocytes activation / neonates / procalcitonin

Cite this article

Download citation ▾
Yiyi Tao, Qian Li, Huidi Peng, Ningshu Huang. Diagnostic value of procalcitonin and hemocyte parameters in neonates with bloodstream infection: Role of activated hemocyte-related genes. Pediatric Discovery, 2024, 2(4): e56 DOI:10.1002/pdi3.56

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShaneAL, Sánchez PJ, StollBJ. Neonatal sepsis. Lancet. 2017; 390(10104):1770-1780.

[2]

GladstoneIM, Ehrenkranz RA, EdbergSC, BaltimoreRS. A ten-year review of neonatal sepsis and comparison with the previous fifty-year experience. Pediatr Infect Dis J. 1990; 9(11):819-825.

[3]

WeissSL, Fitzgerald JC, PappachanJ, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015; 191(10):1147-1157.

[4]

WynnJL, PolinRA. Progress in the management of neonatal sepsis: the importance of a consensus definition. Pediatr Res. 2018; 83(1-1):13-15.

[5]

Dien BardJ, McElvania TeKippe E. Diagnosis of bloodstream infections in children. J Clin Microbiol. 2016; 54(6):1418-1424.

[6]

HuberS, HetzerB, CrazzolaraR, Orth-Höller D. The correct blood volume for paediatric blood cultures: a conundrum? Clin Microbiol Infect. 2020; 26(2):168-173.

[7]

CanteyJB, LeeJH. Biomarkers for the diagnosis of neonatal sepsis. Clin Perinatol. 2021; 48(2):215-227.

[8]

GuoL, Rondina MT. The Era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol. 2019; 10:2204.

[9]

MiddletonEA, Weyrich AS, ZimmermanGA. Platelets in pulmonary immune responses and inflammatory lung diseases. Physiol Rev. 2016; 96(4):1211-1259.

[10]

KoupenovaM, ClancyL, CorkreyHA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018; 122(2):337-351.

[11]

ThomasMR, StoreyRF. The role of platelets in inflammation. Thromb Haemostasis. 2015; 114(3):449-458.

[12]

ZareifarS, Farahmand Far MR, GolfeshanF, CohanN. Changes in platelet count and mean platelet volume during infectious and inflammatory disease and their correlation with ESR and CRP. J Clin Lab Anal. 2014; 28(3):245-248.

[13]

GandhiP, Kondekar S. A review of the different haematological parameters and biomarkers used for diagnosis of neonatal sepsis. EMJ Hematol. 2019:85-92. Web site

[14]

EngleWD, Rosenfeld CR. Neutropenia in high-risk neonates. J Pediatr. 1984; 105(6):982-986

[15]

GhoshS, MittalM, JaganathanG. Early diagnosis of neonatal sepsis using a hematological scoring system. Indian J Med Sci. 2001; 55(9):495-500.

[16]

WorkuM, Aynalem M, BisetS, WolduB, AdaneT, TigabuA. Role of complete blood cell count parameters in the diagnosis of neonatal sepsis. BMC Pediatr. 2022; 22(1):411.

[17]

ChauhanN, TiwariS, JainU. Potential biomarkers for effective screening of neonatal sepsis infections: an overview. Microb Pathog. 2017; 107:234-242

[18]

PaudelR, DograP, Montgomery-YatesAA, Coz YatacoA. Procalcitonin: a promising tool or just another overhyped test? Int J Med Sci. 2020; 17(3):332-337.

[19]

MohsenAH, KamelBA. Predictive values for procalcitonin in the diagnosis of neonatal sepsis. Electron Physician. 2015; 7(4):1190-1195.

[20]

VouloumanouEK, PlessaE, KarageorgopoulosDE, MantadakisE, Falagas ME. Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med. 2011; 37(5):747-762.

[21]

WackerC, PrknoA, BrunkhorstFM, SchlattmannP. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013; 13(5):426-435.

[22]

TurnerD, Hammerman C, RudenskyB, SchlesingerY, GoiaC, SchimmelMS. Procalcitonin in preterm infants during the first few days of life: introducing an age related nomogram. Arch Dis Child Fetal Neonatal Ed. 2006; 91(4): F283-F286.

[23]

López SastreJB, Solís DP, SerradillaVR, ColomerBF, Cotallo GD. Evaluation of procalcitonin for diagnosis of neonatal sepsis of vertical transmission. BMC Pediatr. 2007; 7(1):9.

[24]

ChiesaC, NataleF, PasconeR, et al. C reactive protein and procalcitonin: reference intervals for preterm and term newborns during the early neonatal period. Clin Chim Acta. 2011; 412(11-12):1053-1059.

[25]

AssummaM, Signore F, PacificoL, RossiN, OsbornJF, ChiesaC. Serum procalcitonin concentrations in term delivering mothers and their healthy offspring: a longitudinal study. Clin Chem. 2000; 46(10):1583-1587.

[26]

BellSG. Procalcitonin and neonatal sepsis: is this the biomarker we are looking for? Neonatal Netw. 2017; 36(6):380-384.

[27]

NewmanTB, Puopolo KM, WiS, DraperD, Escobar GJ. Interpreting complete blood counts soon after birth in newborns at risk for sepsis. Pediatrics. 2010; 126(5):903-909.

[28]

HornikCP, Benjamin DK, BeckerKC, et al. Use of the complete blood cell count in early-onset neonatal sepsis. Pediatr Infect Dis J. 2012; 31(8):799-802.

[29]

ArunachalamAR, PammiM. Biomarkers in early-onset neonatal sepsis: an update. Ann Clin Med Microbio. 2015; 1(2):1007.

[30]

ZhouG, SoufanO, EwaldJ, Hancock REW, BasuN, XiaJ. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019; 47(W1): W234-w241

[31]

XiaJ, GillEE, HancockRE. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 2015; 10(6):823-844.

[32]

HuangDW, Sherman BT, TanQ, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007; 35(Suppl l_2): W169-W175).

[33]

YuG, WangLG, HanY, HeQY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics a J Integr Biol. 2012; 16(5):284-287.

[34]

SubramanianA, TamayoP, MoothaVK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-15550.

[35]

SzklarczykD, Franceschini A, WyderS, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015; 43: D447-D452.

[36]

ShannonP, Markiel A, OzierO, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-2504.

[37]

BaderGD, HogueCW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 2003; 4(1):2.

[38]

HincuMA, ZondaGI, StanciuGD, Nemescu D, PaduraruL. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis. Children. 2020; 7(12):309.

[39]

BatemanSL, SeedPC. Procession to pediatric bacteremia and sepsis: covert operations and failures in diplomacy. Pediatrics. 2010; 126(1):137-150.

[40]

JiangJ, DingY, WuM, et al. Identification of TYROBP and C1QB as two novel key genes with prognostic value in gastric cancer by network analysis. Front Oncol. 2020; 10:1765.

[41]

LuJ, PengY, HuangR, et al. Elevated TYROBP expression predicts poor prognosis and high tumor immune infiltration in patients with low-grade glioma. BMC Cancer. 2021; 21(1):723.

[42]

LiJ, ShiH, YuanZ, et al. The role of SPI1-TYROBP-FCER1G network in oncogenesis and prognosis of osteosarcoma, and its association with immune infiltration. BMC Cancer. 2022; 22(1):108.

[43]

BaczynskiM, Kharrat A, ZhuF, et al. Bloodstream infections in preterm neonates and mortality-associated risk factors. J Pediatr. 2021; 237:206-212.e201.

[44]

ClappDW. Developmental regulation of the immune system. Semin Perinatol. 2006; 30(2):69-72.

[45]

WynnJL, SeedPC, CottenCM. Does IVIg administration yield improved immune function in very premature neonates? J Perinatol. 2010; 30(10):635-642.

[46]

PolinRA, RandisTM. Biomarkers for late-onset neonatal sepsis. Genome Med. 2010; 2(9):58.

[47]

Camacho-GonzalezA, Spearman PW, StollBJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin. 2013; 60(2):367-389.

[48]

ErshadM, Mostafa A, Dela CruzM, VearrierD. Neonatal sepsis. Curr Emerg Hosp Med Rep. 2019; 7(3):83-90.

[49]

Iroh TamPY, BendelCM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res. 2017; 82(4):574-583.

[50]

WhangKT, Steinwald PM, WhiteJC, et al. Serum calcitonin precursors in sepsis and systemic inflammation. J Clin Endocrinol metabolism. 1998; 83(9):3296-3301.

[51]

LimPPC, Bondarev DJ, EdwardsAM, HoyenCM, MaciasCG. The evolving value of older biomarkers in the clinical diagnosis of pediatric sepsis. Pediatr Res. 2022; 93(4):789-796.

[52]

FukuzumiN, OsawaK, SatoI, et al. Age-specific percentile-based reference curve of serum procalcitonin concentrations in Japanese preterm infants. Sci Rep. 2016; 6(1):23871.

[53]

LeeJ, BangYH, LeeEH, Choi BM, HongYS. The influencing factors on procalcitonin values in newborns with noninfectious conditions during the first week of life. Korean J Pediatr. 2017; 60(1):10-16.

[54]

van RossumAM, WulkanRW, Oudesluys-MurphyAM. Procalcitonin as an early marker of infection in neonates and children. Lancet Infect Dis. 2004; 4(10):620-630.

[55]

YoonSH, KimEH, KimHY, Ahn JG. Presepsin as a diagnostic marker of sepsis in children and adolescents: a systemic review and meta-analysis. BMC Infect Dis. 2019; 19(1):760.

[56]

EschbornS, Weitkamp JH. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis. J Perinatol. 2019; 39(7):893-903.

[57]

PatelK, McElvania E. Diagnostic challenges and laboratory considerations for pediatric sepsis. J Appl laboratory Med. 2019; 3(4):587-600.

[58]

MathaSM, Rahiman SN, GelbartBG, DukeTD. The utility of procalcitonin in the prediction of serious bacterial infection in a tertiary paediatric intensive care unit. Anaesth Intensive Care. 2016; 44(5):607-614.

[59]

MandellIM, Aghamohammadi S, DeakersT, KhemaniRG. Procalcitonin to detect suspected bacterial infections in the PICU. Pediatr Crit Care Med. 2016; 17(1): e4-e12.

[60]

MikhaelM, BrownLS, RosenfeldCR. Serial neutrophil values facilitate predicting the absence of neonatal early-onset sepsis. J Pediatr. 2014; 164(3):522-528.e521-523.

[61]

CanteyJB, LeeJH. Biomarkers for the diagnosis of neonatal sepsis. Clin Perinatol. 2021; 48(2):215-227.

[62]

KaneshiroNK. Neutropenia - infants. MedlinePlus. 2021. https://medlineplus.gov/ency/article/007230.htm

[63]

BhardwajR, Chaudhari S, JoshiM, ThankyH, PatelJ. Study of hematological parameters in culture positive neonatal septicemia. Int J Adv Res. 2016; 4(2):208-214.

[64]

ReeIMC, Fustolo-Gunnink SF, BekkerV, FijnvandraatKJ, Steggerda SJ, LoprioreE. Thrombocytopenia in neonatal sepsis: incidence, severity and risk factors. PLoS One. 2017; 12(10):e0185581.

[65]

ArcagokBC, Karabulut B. Platelet to lymphocyte ratio in neonates: a predictor of early onset neonatal sepsis. Mediterr J Hematol Infect Dis. 2019; 11(1):e2019055.

[66]

GaoY, LiY, YuX, et al. The impact of various platelet indices as prognostic markers of septic shock. PLoS One. 2014; 9(8):e103761.

[67]

SweetRA, Nickerson KM, CullenJL, WangY, Shlomchik MJ. B cell-extrinsic Myd88 and Fcer1g negatively regulate autoreactive and normal B cell immune responses. J Immunol. 2017; 199(3):885-893.

[68]

ShahS, GibsonAW, JiC, et al. Regulation of FcRγ function by site-specific serine phosphorylation. J Leukoc Biol. 2017; 101(2):421-428.

[69]

Le ConiatM, KinetJP, BergerR. The human genes for the alpha and gamma subunits of the mast cell receptor for immunoglobulin E are located on human chromosome band 1q23. Immunogenetics. 1990; 32(3):183-186.

[70]

FuL, ChengZ, DongF, et al. Enhanced expression of FCER1G predicts positive prognosis in multiple myeloma. J Cancer. 2020; 11(5):1182-1194.

[71]

ChenL, YuanL, WangY, et al. Co-expression network analysis identified FCER1G in association with progression and prognosis in human clear cell renal cell carcinoma. Int J Biol Sci. 2017; 13(11):1361-1372.

[72]

RajaramanP, Brenner AV, NetaG, et al. Risk of meningioma and common variation in genes related to innate immunity. Cancer Epidemiol Biomarkers Prev a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010; 19(5):1356-1361.

[73]

HandschuhL, Kaźmierczak M, MilewskiMC, et al. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR. Int J Oncol. 2018; 52(3):656-678.

[74]

HanS, LanQ, ParkAK, et al. Polymorphisms in innate immunity genes and risk of childhood leukemia. Hum Immunol. 2010; 71(7):727-730.

[75]

HamermanJA, NiM, KillebrewJR, Chu CL, LowellCA. The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev. 2009; 232(1):42-58.

[76]

WangL, LinY, YuanY, Liu F, SunK. Identification of TYROBP and FCER1G as key genes with prognostic value in clear cell renal cell carcinoma by bioinformatics analysis. Biochem Genet. 2021; 59(5):1278-1294.

[77]

CookWD, McCawBJ, HerringC, et al. Pu 1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA binding domain. Blood. 2004; 104(12):3437-3444.

[78]

ScottEW, SimonMC, AnastasiJ, Singh H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994; 265(5178):1573-1577.

[79]

McKercherSR, Torbett BE, AndersonKL, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 1996; 15(20):5647-5658.

[80]

AndersonKL, PerkinH, SurhCD, Venturini S, MakiRA, TorbettBE. Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J Immunol. 2000; 164(4):1855-1861.

[81]

DiefenbachA, Tomasello E, LucasM, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol. 2002; 3(12):1142-1149.

[82]

WuP, XiangT, WangJ, Lv R, WuG. TYROBP is a potential prognostic biomarker of clear cell renal cell carcinoma. FEBS open bio. 2020; 10(12):2588-2604.

[83]

YaoJ, DuanL, HuangX, et al. Development and validation of a prognostic gene signature correlated with M2 macrophage infiltration in esophageal squamous cell carcinoma. Front Oncol. 2021; 11:769727.

[84]

ZivkovicA, SharifO, StichK, et al. TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol. 2011; 186(3):1608-1617.

[85]

LeeHK, Dunzendorfer S, SoldauK, TobiasPS. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity. 2006; 24(2):153-163.

[86]

BaumannCL, Aspalter IM, SharifO, et al. CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med. 2010; 207(12):2689-2701.

[87]

ChenZ, ShaoZ, MeiS, et al. Sepsis upregulates CD14 expression in a MyD88-dependent and trif-independent pathway. Shock. 2018; 49(1):82-89.

[88]

HashemHE, Ibrahim ZH, AhmedWO. Diagnostic, prognostic, predictive, and monitoring role of neutrophil CD11b and monocyte CD14 in neonatal sepsis. Dis Markers. 2021; 2021:4537760-4537812.

[89]

MoestrupSK, Møller HJ. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med. 2004; 36(5):347-354.

[90]

CuiY, ZhangYC, RongQF, Zhu Y. [Changes and significance of soluble CD 163 in sepsis and severe sepsis in children]. Zhonghua Er Ke Za Zhi Chin J Pediatr. 2012; 50(9):653.

[91]

FabriekBO, van Bruggen R, DengDM, et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood. 2009; 113(4):887-892.

[92]

Groselj-GrencM, IhanA, DergancM. Neutrophil and monocyte CD64 and CD163 expression in critically ill neonates and children with sepsis: comparison of fluorescence intensities and calculated indexes. Mediat Inflamm. 2008; 2008:202646-202710.

RIGHTS & PERMISSIONS

2024 The Authors. Pediatric Discovery published by John Wiley & Sons Australia, Ltd on behalf of Children’s Hospital of Chongqing Medical University.

AI Summary AI Mindmap
PDF

279

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/