Spina bifida as a multifactorial birth defect: Risk factors and genetic underpinnings

Ethan S. Wong , Daniel A. Hu , Lily Zhang , Rachel Qi , Cindy Xu , Ou Mei , Guowei Shen , Wulin You , Changqi Luo , Tong-Chuan He , Russell R. Reid , Lewis S. Shi , Michael J. Lee , Yi Zhu

Pediatric Discovery ›› 2025, Vol. 3 ›› Issue (2) : e2517

PDF
Pediatric Discovery ›› 2025, Vol. 3 ›› Issue (2) : e2517 DOI: 10.1002/pdi3.2517
REVIEW

Spina bifida as a multifactorial birth defect: Risk factors and genetic underpinnings

Author information +
History +
PDF

Abstract

Spina bifida is a birth defect resulting from abnormal embryonic development of the neural tube. Though spina bifida is divided into several subtypes, myelomeningocele—the most severe form of spina bifida often associated with a markedly diminished quality of life—accounts for a significant portion of cases. A broad range of genetic and environmental factors, many of which are still unknown, influence spina bifida, making it difficult to provide a comprehensive etiology for the disorder. Folic acid supplementation aided by the mandatory fortification of food is preventive; still, spina bifida persists due to numerous other confounding factors that affect risk. This article reviews the latest studies pertaining to the risk factors and genetics involved in spina bifida in an attempt to elucidate the complex background of the congenital malformation. Additionally, this review highlights the significant impact of environmental pollutants, adverse medication effects, and maternal health conditions such as diabetes and obesity on the prevalence of spina bifida. Emerging research on gene-environment interactions provides insight into how specific genetic variants may influence susceptibility to these environmental factors. We also discuss new technologies in genetic sequencing that show promise for the large-scale discovery of genes associated with spina bifida risk. Understanding these intricate interactions is crucial for developing effective prevention and intervention strategies.

Keywords

genetics / neural tube defects / risk factors / spina bifida / spinal dysraphism

Cite this article

Download citation ▾
Ethan S. Wong, Daniel A. Hu, Lily Zhang, Rachel Qi, Cindy Xu, Ou Mei, Guowei Shen, Wulin You, Changqi Luo, Tong-Chuan He, Russell R. Reid, Lewis S. Shi, Michael J. Lee, Yi Zhu. Spina bifida as a multifactorial birth defect: Risk factors and genetic underpinnings. Pediatric Discovery, 2025, 3(2): e2517 DOI:10.1002/pdi3.2517

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liptak GS, Robinson LM, Davidson PW, et al. Life course health and healthcare utilization among adults with spina Bifida. Dev Med Child Neurol. 2016; 58(7): 714-720.

[2]

Stallings EB, Isenburg JL, Rutkowski RE, et al. National population-based estimates for major birth defects, 2016-2020. Birth Defects Res. 2024; 116(1):e2301.

[3]

Pace ND, Siega-Riz AM, Olshan AF, et al. Survival of infants with spina Bifida and the role of maternal prepregnancy body mass index. Birth Defects Res. 2019; 111(16): 1205-1216.

[4]

Agopian AJ, Canfield MA, Olney RS, et al. Spina bifida subtypes and sub-phenotypes by maternal race/ethnicity in the National Birth Defects Prevention Study. Am J Med Genet. 2012; 158A(1): 109-115.

[5]

Alatise OI, Adeolu AA, Komolafe EO, Adejuyigbe O, Sowande OA. Pattern and factors affecting management outcome of spina Bifida cystica in Ile-Ife, Nigeria. Pediatr Neurosurg. 2006; 42(5): 277-283.

[6]

Kumar A, Tubbs RS. Spina Bifida: a diagnostic dilemma in paleopathology. Clin Anat. 2011; 24(1): 19-33.

[7]

Eagles ME, Gupta N. Embryology of spinal dysraphism and its relationship to surgical treatment. Can J Neurol Sci. 2020; 47(6): 736-746.

[8]

Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR):checklist and explanation. Ann Intern Med. 2018; 169(7): 467-473.

[9]

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016; 5(1): 210.

[10]

Wolujewicz P, Steele JW, Kaltschmidt JA, Finnell RH, Ross ME. Unraveling the complex genetics of neural tube defects: from biological models to human genomics and back. Genesis. 2021; 59(11):e23459.

[11]

Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS. Spina bifida. Lancet. 2004; 364(9448): 1885-1895.

[12]

Shaer CM, Chescheir N, Schulkin J. Myelomeningocele: a review of the epidemiology, genetics, risk factors for conception, prenatal diagnosis, and prognosis for affected individuals. Obstet Gynecol Surv. 2007; 62(7): 471-479.

[13]

Sepulveda W, Corral E, Ayala C, Be C, Gutierrez J, Vasquez P. Chromosomal abnormalities in fetuses with open neural tube defects: prenatal identification with ultrasound. Ultrasound Obstet Gynecol. 2004; 23(4): 352-356.

[14]

Harmon JP, Hiett AK, Palmer CG, Golichowski AM. Prenatal ultrasound detection of isolated neural tube defects: is cytogenetic evaluation warranted? Obstet Gynecol. 1995; 86(4 Pt 1): 595-599.

[15]

Kennedy D, Chitayat D, Winsor EJ, Silver M, Toi A. Prenatally diagnosed neural tube defects: ultrasound, chromosome, and autopsy or postnatal findings in 212 cases. Am J Med Genet. 1998; 77(4): 317-321.

[16]

Hall J, Solehdin F. Genetics of neural tube defects. Ment Retard Dev Disabil Res Rev. 1998; 4: 269-281.

[17]

Coerdt W, Miller K, Holzgreve W, Rauskolb R, Schwinger E, Rehder H. Neural tube defects in chromosomally normal and abnormal human embryos. Ultrasound Obstet Gynecol. 1997; 10(6): 410-415.

[18]

Hume RFJ, Drugan A, Reichler A, et al. Aneuploidy among prenatally detected neural tube defects. Am J Med Genet. 1996; 61(2): 171-173.

[19]

Kälién B, Robert E, Harris J. Associated malformations in infants and fetuses with upper or lower neural tube defects. Teratology. 1998; 57(2): 56-63.

[20]

Agopian AJ, Tinker SC, Lupo PJ, Canfield MA, Mitchell LE, Study NBDP. Proportion of neural tube defects attributable to known risk factors. Birth Defects Res A Clin Mol Teratol. 2013; 97(1): 42-46.

[21]

Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC vitamin study research group. Lancet. 1991; 338(8760): 131-137.

[22]

Grosse SD, Collins JS. Folic acid supplementation and neural tube defect recurrence prevention. Birth Defects Res A Clin Mol Teratol. 2007; 79(11): 737-742.

[23]

Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR Recomm Rep (Morb Mortal Wkly Rep). 1992; 41(RR-14): 1-7.

[24]

De Marco P, Merello E, Calevo MG, et al. Maternal periconceptional factors affect the risk of spina Bifida-affected pregnancies: an Italian case-control study. Childs Nerv Syst.2011; 27(7): 1073-1081.

[25]

Kondo A, Morota N, Ihara S, et al. Risk factors for the occurrence of spina Bifida (a case-control study) and the prevalence rate of spina Bifida in Japan. Birth Defects Res A Clin Mol Teratol. 2013; 97(9): 610-615.

[26]

Wald N. Folic Acid and the Prevention of Neural Tube Defects. Ann N Y Acad Sci. 1993; 678(1): 112-129.

[27]

Daly LE, Kirke PN, Molloy A, Weir DG, Scott JM. Folate levels and neural tube defects. Implications for prevention. JAMA. 1995; 274(21): 1698-1702.

[28]

Crider KS, Bailey LB, Berry RJ. Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients. 2011; 3(3): 370-384.

[29]

Botto LD, Moore CA, Khoury MJ, Erickson JD. Neural-tube defects. N Engl J Med. 1999; 341(20): 1509-1519.

[30]

Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med. 1999; 340(19): 1449-1454.

[31]

Lawrence JM, Petitti DB, Watkins M, Umekubo MA. Trends in serum folate after food fortification. Lancet. 1999; 354(9182): 915-916.

[32]

Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM. Spina Bifida. Nat Rev Dis Prim. 2015; 1:15007.

[33]

Williams LJ, Mai CT, Edmonds LD, et al. Prevalence of spina Bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology. 2002; 66(1): 33-39.

[34]

Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA. 2001; 285(23): 2981-2986.

[35]

Canfield MA, Collins JS, Botto LD, et al. Changes in the birth prevalence of selected birth defects after grain fortification with folic acid in the United States: findings from a multi-state population-based study. Birth Defects Res A Clin Mol Teratol. 2005; 73(10): 679-689.

[36]

Forrester MB, Merz RD. Descriptive epidemiology of lipomyelomeningocele, Hawaii, 1986-2001. Birth Defects Res A Clin Mol Teratol. 2004; 70(12): 953-956.

[37]

De Wals P, Van Allen MI, Lowry RB, et al. Impact of folic acid food fortification on the birth prevalence of lipomyelomeningocele in Canada. Birth Defects Res A Clin Mol Teratol. 2008; 82(2): 106-109.

[38]

McNeely PD, Howes WJ. Ineffectiveness of dietary folic acid supplementation on the incidence of lipomyelomeningocele: pathogenetic implications. J Neurosurg. 2004; 100(2 suppl Pediatrics): 98-100.

[39]

Esmaeili A, Hanaei S, Fadakar K, et al. Risk factors associated with lipomyelomeningocele: a case-control study. Pediatr Neurosurg. 2013; 49(4): 202-207.

[40]

Parker SE, Yazdy MM, Tinker SC, Mitchell AA, Werler MM. The impact of folic acid intake on the association among diabetes mellitus, obesity, and spina Bifida. Am J Obstet Gynecol. 2013; 209(3): 239.e1-e8.

[41]

Donnan J, Walsh S, Sikora L, Morrissey A, Collins K, MacDonald D. A systematic review of the risks factors associated with the onset and natural progression of spina Bifida. Neurotoxicology. 2017; 61: 20-31.

[42]

Werler MM, Louik C, Shapiro S, Mitchell AA. Prepregnant weight in relation to risk of neural tube defects. JAMA. 1996; 275(14): 1089-1092.

[43]

Logman JF, De Vries LE, Hemels MEH, Khattak S, Einarson TR. Paternal organic solvent exposure and adverse pregnancy outcomes: a meta-analysis. Am J Ind Med. 2005; 47(1): 37-44.

[44]

Ngo AD, Taylor R, Roberts CL. Paternal exposure to Agent Orange and spina Bifida: a meta-analysis. Eur J Epidemiol. 2010; 25(1): 37-44.

[45]

Tindula G, Mukherjee SK, Ekramullah SM, et al. Parental metal exposures as potential risk factors for spina Bifida in Bangladesh. Environ Int. 2021; 157:106800.

[46]

Bozack AK, Saxena R, Gamble MV. Nutritional influences on one-carbon metabolism: effects on arsenic methylation and toxicity. Annu Rev Nutr. 2018; 38(1): 401-429.

[47]

Naujokas MF, Anderson B, Ahsan H, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013; 121(3): 295-302.

[48]

Mazumdar M, Valeri L, Rodrigues EG, et al. Polymorphisms in maternal folate pathway genes interact with arsenic in drinking water to influence risk of myelomeningocele. Birth Defects Res A Clin Mol Teratol. 2015; 103(9): 754-762.

[49]

Mazumdar M, Ibne Hasan MO, Hamid R, et al. Arsenic is associated with reduced effect of folic acid in myelomeningocele prevention: a case control study in Bangladesh. Environ Health. 2015; 14(1): 34.

[50]

Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017; 25(1): 11-24.

[51]

Jin L, Liu M, Zhang L, et al. Exposure of methyl mercury in utero and the risk of neural tube defects in a Chinese population. Reprod Toxicol. 2016; 61: 131-135.

[52]

Brender JD, Suarez L, Felkner M, et al. Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring. Environ Res. 2006; 101(1): 132-139.

[53]

Jin L, Zhang L, Li Z.-W, Liu J.-M, Ye R, Ren A.-G. Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol. 2013; 35: 25-31.

[54]

Blatter BM, Roeleveld N. Spina Bifida and parental occupation in a Swedish register-based study. Scand J Work Environ Health. 1996; 22(6): 433-437.

[55]

Rull RP, Ritz B, Shaw GM. Neural tube defects and maternal residential proximity to agricultural pesticide applications. Am J Epidemiol. 2006; 163(8): 743-753.

[56]

Desrosiers TA, Lawson CC, Meyer RE, et al. Maternal occupational exposure to organic solvents during early pregnancy and risks of neural tube defects and orofacial clefts. Occup Environ Med. 2012; 69(7): 493-499.

[57]

Blaasaas KG, Tynes T, Irgens A, Lie RT. Risk of birth defects by parental occupational exposure to 50 Hz electromagnetic fields: a population based study. Occup Environ Med. 2002; 59(2): 92-97.

[58]

Matte TD, Mulinare J, Erickson JD. Case-control study of congenital defects and parental employment in health care. Am J Ind Med. 1993; 24(1): 11-23.

[59]

Blatter BM, Hermens R, Bakker M, Roeleveld N, Verbeek AL, Zielhuis GA. Paternal occupational exposure around conception and spina Bifida in offspring. Am J Ind Med. 1997; 32(3): 283-291.

[60]

Gonzalez-Herrera L, Martín Cerda-Flores R, Luna-Rivero M, et al. Paraoxonase 1 polymorphisms and haplotypes and the risk for having offspring affected with spina Bifida in Southeast Mexico. Birth Defects Res A Clin Mol Teratol. 2010; 88(11): 987-994.

[61]

Jentink J, Loane MA, Dolk H, et al. Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 2010; 362(23): 2185-2193.

[62]

Alsdorf R, Wyszynski DF. Teratogenicity of sodium valproate. Expet Opin Drug Saf. 2005; 4(2): 345-353.

[63]

Hernández-Díaz S, Werler MM, Walker AM, Mitchell AA. Neural tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol. 2001; 153(10): 961-968.

[64]

Morrow JI, Hunt SJ, Russell AJ, et al. Folic acid use and major congenital malformations in offspring of women with epilepsy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry. 2009; 80(5): 506-511.

[65]

Jentink J, Bakker MK, Nijenhuis CM, Wilffert B, De Jong-van den Berg LTW. Does folic acid use decrease the risk for spina Bifida after in utero exposure to valproic acid? Pharmacoepidemiol Drug Saf. 2010; 19(8): 803-807.

[66]

Kishi T, Fujita N, Eguchi T, Ueda K. Mechanism for reduction of serum folate by antiepileptic drugs during prolonged therapy. J Neurol Sci. 1997; 145(1): 109-112.

[67]

Pippenger CE. Pharmacology of neural tube defects. Epilepsia. 2003; 44(suppl 3): 24-32.

[68]

Graf WD, Pippenger CE, Shurtleff DB. Erythrocyte antioxidant enzyme activities in children with myelomeningocele. Dev Med Child Neurol. 1995; 37(10): 900-905.

[69]

Weber GF, Maertens P, Meng X, Pippenger CE. Glutathione peroxidase deficiency and childhood seizures. Lancet. 1991; 337(8755): 1443-1444.

[70]

Arslan M, Melek M, Demir H, et al. Relationship of antioxidant enzyme activities with myelomeningocele. Turk Neurosurg. 2012; 22(3): 300-304.

[71]

Graf WD, Oleinik OE, Pippenger CE, Eder DN, Glauser TA, Shurtleff DB. Comparison of erythrocyte antioxidant enzyme activities and embryologic level of neural tube defects. Eur J Pediatr Surg. 1995; 5(suppl 1): 8-11.

[72]

Etemad L, Moshiri M, Moallem SA. Epilepsy drugs and effects on fetal development: potential mechanisms. J Res Med Sci. 2012; 17(9): 876-881.

[73]

Emejulu JKC, Okwaraoha BO. Peculiarities in cases of spina Bifida cystica managed recently in south-east Nigeria: could antimalarial drugs be a major but unrecognized etiologic factor? Pediatr Neurosurg. 2011; 47(3): 194-197.

[74]

Cao Y.-Y, Rhoads A, Burns T, et al. Maternal use of cough medications during early pregnancy and selected birth defects: a US multisite, case–control study. BMJ Open. 2021; 11(12):e053604.

[75]

Benedum CM, Yazdy MM, Mitchell AA, Werler MM. Impact of periconceptional use of nitrosatable drugs on the risk of neural tube defects. Am J Epidemiol. 2015; 182(8): 675-684.

[76]

Brender JD, Olive JM, Felkner M, Suarez L, Marckwardt W, Hendricks KA. Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. Epidemiology. 2004; 15(3): 330-336.

[77]

Corona-Rivera JR, Olvera-Molina S, Pérez-Molina JJ, et al. Prevalence of open neural tube defects and risk factors related to isolated anencephaly and spina Bifida in live births from the “Dr. Juan I. Menchaca” Civil Hospital of Guadalajara (Jalisco, Mexico). Congenital Anom. 2021; 61(2): 46-54.

[78]

Aynalem Tesfay F, Bulte Aga F, Sebsibie Teshome G. Determinants of neural tube defect among children at zewditu memorial hospital, Addis Ababa, Ethiopia a case control study. Int J Afr Nurs Sci.2021; 15:100318.

[79]

Åberg A, Westbom L, Källén B. Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum Dev. 2001; 61(2): 85-95.

[80]

Mowla S, Gissler M, Räisänen S, Kancherla V. Association between maternal pregestational diabetes mellitus and spina Bifida: a population-based case-control study, Finland, 2000-2014. Birth Defects Res. 2020; 112(2): 186-195.

[81]

Ray JG, Vermeulen MJ, Meier C, Wyatt PR. Risk of congenital anomalies detected during antenatal serum screening in women with pregestational diabetes. QJM. 2004; 97(10): 651-653.

[82]

Shah K, Shah H. A systematic review of maternal diabetes and congenital skeletal malformation. Congenit Anom (Kyoto). 2022; 62(3): 113-122.

[83]

Baack ML, Wang C.-L, Hu S.-M, Segar JL, Norris AW. Hyperglycemia induces embryopathy, even in the absence of systemic maternal diabetes: an in vivo test of the fuel mediated teratogenesis hypothesis. Reprod Toxicol. 2014; 46: 129-136.

[84]

Zhao Z.-Y, Reece EA. New concepts in diabetic embryopathy. Clin Lab Med. 2013; 33(2): 207-233.

[85]

Janssen PA, Rothman I, Schwartz SM. Congenital malformations in newborns of women with established and gestational diabetes in Washington State, 1984-91. Paediatr Perinat Epidemiol. 1996; 10(1): 52-63.

[86]

Correa A, Gilboa SM, Botto LD, et al. Lack of periconceptional vitamins or supplements that contain folic acid and diabetes mellitus-associated birth defects. Am J Obstet Gynecol. 2012; 206(3):218.e1-218.13.

[87]

Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007; 30(8): 2070-2076.

[88]

Stothard KJ, Tennant PWG, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA. 2009; 301(6): 636-650.

[89]

Anderson JL, Waller DK, Canfield MA, Shaw GM, Watkins ML, Werler MM. Maternal obesity, gestational diabetes, and central nervous system birth defects. Epidemiology. 2005; 16(1): 87-92.

[90]

Watkins ML, Rasmussen SA, Honein MA, Botto LD, Moore CA. Maternal obesity and risk for birth defects. Pediatrics. 2003; 111(5 Pt 2): 1152-1158.

[91]

Shaw GM, Velie EM, Schaffer D. Risk of neural tube defect-affected pregnancies among obese women. JAMA. 1996; 275(14): 1093-1096.

[92]

Waller DK, Shaw GM, Rasmussen SA, et al. Prepregnancy obesity as a risk factor for structural birth defects. Arch Pediatr Adolesc Med. 2007; 161(8): 745-750.

[93]

Gao L.-J, Wang Z.-P, Lu Q.-B, Gong R, Sun X.-H, Zhao Z.-T. Maternal overweight and obesity and the risk of neural tube defects: a case-control study in China. Birth Defects Res A Clin Mol Teratol. 2013; 97(3): 161-165.

[94]

Talebian A, Soltani B, Sehat M, Zahedi A, Noorian A, Talebian M. Incidence and risk factors of neural tube defects in Kashan, central Iran. Iran J Child Neurol. 2015; 9(3): 50-56.

[95]

Benjamin RH, Ethen MK, Canfield MA, Hua F, Mitchell LE. Association of interpregnancy change in body mass index and spina Bifida. Birth Defects Res. 2019; 111(18): 1389-1398.

[96]

Carter CO, Evans KA, Till K. Spinal dysraphism: genetic relation to neural tube malformations. J Med Genet. 1976; 13(5): 343-350.

[97]

Sebold CD, Melvin EC, Siegel D, et al. Recurrence risks for neural tube defects in siblings of patients with lipomyelomeningocele. Genet Med. 2005; 7(1): 64-67.

[98]

Carter CO, Evans K. Spina bifida and anencephalus in greater london. J Med Genet. 1973; 10(3): 209-234.

[99]

Hunter AG. Neural tube defects in Eastern Ontario and Western Quebec: demography and family data. Am J Med Genet. 1984; 19(1): 45-63.

[100]

Demenais F, Le Merrer M, Briard ML, Elston RC. Neural tube defects in France: segregation analysis. Am J Med Genet. 1982; 11(3): 287-298.

[101]

Janerich DT, Piper J. Shifting genetic patterns in anencephaly and spina Bifida. J Med Genet. 1978; 15(2): 101-105.

[102]

Carter CO, David PA, Laurence KM. A family study of major central nervous system malformations in South Wales. J Med Genet. 1968; 5(2): 81-106.

[103]

Toriello HV, Higgins JV, Opitz JM. Occurrence of neural tube defects among first-, second-, and third-degree relatives of probands: results of a United States study. Am J Med Genet. 1983; 15(4): 601-606.

[104]

Lupo PJ, Agopian AJ, Castillo H, et al. Genetic epidemiology of neural tube defects. J Pediatr Rehabil Med. 2017; 10(3-4): 189-194.

[105]

Dupépé EB, Patel DM, Rocque BG, et al. Surveillance survey of family history in children with neural tube defects. J Neurosurg Pediatr. 2017; 19(6): 690-695.

[106]

Wu YW, Croen LA, Henning L, Najjar DV, Schembri M, Croughan MS. Potential association between infertility and spinal neural tube defects in offspring. Birth Defects Res A Clin Mol Teratol. 2006; 76(10): 718-722.

[107]

Paz JE, Otaño L, Gadow EC, Castilla EE. Previous miscarriage and stillbirth as risk factors for other unfavourable outcomes in the next pregnancy. Br J Obstet Gynaecol. 1992; 99(10): 808-812.

[108]

Tang Y.-W, Ma C.-X, Cui W, et al. The risk of birth defects in multiple births: a population-based study. Matern Child Health J. 2006; 10(1): 75-81.

[109]

Nasri K, Ben Fradj MK, Aloui M, et al. An increase in spina Bifida cases in Tunisia, 2008-2011. Pathol Res Pract. 2015; 211(5): 369-373.

[110]

Lynberg MC, Khoury MJ, Lu X, Cocian T. Maternal flu, fever, and the risk of neural tube defects: a population-based case-control study. Am J Epidemiol. 1994; 140(3): 244-255.

[111]

Milunsky A, Ulcickas M, Rothman KJ, Willett W, Jick SS, Jick H. Maternal heat exposure and neural tube defects. JAMA. 1992; 268(7): 882-885.

[112]

Shaw GM, Todoroff K, Velie EM, Lammer EJ. Maternal illness, including fever and medication use as risk factors for neural tube defects. Teratology. 1998; 57(1): 1-7.

[113]

Layde PM, Edmonds LD, Erickson JD. Maternal fever and neural tube defects. Teratology. 1980; 21(1): 105-108.

[114]

Li Z.-W, Ren A.-G, Zhang L, Guo Z.-Y, Li Z. A population-based case-control study of risk factors for neural tube defects in four high-prevalence areas of Shanxi province, China. Paediatr Perinat Epidemiol. 2006; 20(1): 43-53.

[115]

Kerr SM, Parker SE, Mitchell AA, Tinker SC, Werler MM. Periconceptional maternal fever, folic acid intake, and the risk for neural tube defects. Ann Epidemiol. 2017; 27(12): 777-782.e1.

[116]

Sandford MK, Kissling GE, Joubert PE. Neural tube defect etiology: new evidence concerning maternal hyperthermia, health and diet. Dev Med Child Neurol. 1992; 34(8): 661-675.

[117]

Maged A, Elsherbini M, Ramadan W, et al. Periconceptional risk factors of spina Bifida among Egyptian population: a case-control study. J Matern Fetal Neonatal Med. 2016; 29(14): 2264-2267.

[118]

Blais L, Kettani FZ, Elftouh N, Forget A. Effect of maternal asthma on the risk of specific congenital malformations: a population-based cohort study. Birth Defects Res A Clin Mol Teratol. 2010; 88(4): 216-222.

[119]

Groenen PMW, Van Rooij IALM, Peer PGM, Gooskens RH, Zielhuis GA, Steegers-Theunissen RPM. Marginal maternal vitamin B12 status increases the risk of offspring with spina Bifida. Am J Obstet Gynecol. 2004; 191(1): 11-17.

[120]

Ray JG, Blom HJ. Vitamin B12 insufficiency and the risk of fetal neural tube defects. QJM. 2003; 96(4): 289-295.

[121]

Schmidt RJ, Romitti PA, Burns TL, Browne ML, Druschel CM, Olney RS. Maternal caffeine consumption and risk of neural tube defects. Birth Defects Res A Clin Mol Teratol. 2009; 85(11): 879-889.

[122]

Ye R.-W, Ren A.-G, Zhang L, et al. Tea drinking as a risk factor for neural tube defects in Northern China. Epidemiology. 2011; 22(4): 491-496.

[123]

Finnell RH, Gould A, Spiegelstein O. Pathobiology and genetics of neural tube defects. Epilepsia. 2003; 44(suppl 3): 14-23.

[124]

Au KS, Tran PX, Tsai CC, et al. Characteristics of a spina bifida population including north American caucasian and hispanic individuals. Birth Defects Res A Clin Mol Teratol. 2008; 82(10): 692-700.

[125]

Brody LC, Conley M, Cox C, et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the birth defects research group. Am J Hum Genet. 2002; 71(5): 1207-1215.

[126]

Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina Bifida. Am J Hum Genet. 2002; 71(5): 1222-1226.

[127]

Tauheed J, Sanchez-Guerra M, Lee JJ, et al. Associations between post translational histone modifications, myelomeningocele risk, environmental arsenic exposure, and folate deficiency among participants in a case control study in Bangladesh. Epigenetics. 2017; 12(6): 484-491.

[128]

Wilson A, Platt R, Wu Q, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina Bifida. Mol Genet Metabol. 1999; 67(4): 317-323.

[129]

Van der Linden IJM, den Heijer M, Afman LA, et al. The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina Bifida. J Mol Med (Berl). 2006; 84(12): 1047-1054.

[130]

Hillman P, Baker C, Hebert L, et al. Identification of novel candidate risk genes for myelomeningocele within the glucose homeostasis/oxidative stress and folate/one-carbon metabolism networks. Mol Genet Genomic Med. 2020; 8(11):e1495.

[131]

Padula AM, Yang W, Schultz K, Lurmann F, Hammond SK, Shaw GM. Genetic variation in biotransformation enzymes, air pollution exposures, and risk of spina Bifida. Am J Med Genet. 2018; 176(5): 1055-1090.

[132]

Shaw GM, Nelson V, Iovannisci DM, Finnell RH, Lammer EJ. Maternal occupational chemical exposures and biotransformation genotypes as risk factors for selected congenital anomalies. Am J Epidemiol. 2003; 157(6): 475-484.

[133]

Jensen LE, Hoess K, Whitehead AS, Mitchell LE. The NAT1 C1095A polymorphism, maternal multivitamin use and smoking, and the risk of spina Bifida. Birth Defects Res A Clin Mol Teratol. 2005; 73(7): 512-516.

[134]

Yu M, Qin K, Fan J.-M, et al. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis. 2023; 11(3):101026.

[135]

Qin K, Yu M, Fan J.-M, et al. Canonical and noncanonical Wnt signaling: multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis. 2023; 11(1): 103-134.

[136]

Lei Y.-P, Zhu H.-P, Yang W, Ross ME, Shaw GM, Finnell RH. Identification of novel CELSR1 mutations in spina Bifida. PLoS One. 2014; 9(3):e92207.

[137]

Robinson A, Escuin S, Doudney K, et al. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat. 2012; 33(2): 440-447.

[138]

Wen S, Zhu H, Lu W, et al. Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet. 2010; 152A(2): 299-304.

[139]

Lei Y.-P, Zhu H.-P, Duhon C, et al. Mutations in planar cell polarity gene SCRIB are associated with spina Bifida. PLoS One. 2013; 8(7):e69262.

[140]

Kase BA, Northrup H, Morrison AC, et al. Association of copper-zinc superoxide dismutase (SOD1) and manganese superoxide dismutase (SOD2) genes with nonsyndromic myelomeningocele. Birth Defects Res A Clin Mol Teratol. 2012; 94(10): 762-769.

[141]

Wolujewicz P, Ross ME. The search for genetic determinants of human neural tube defects. Curr Opin Pediatr. 2019; 31(6): 739-746.

[142]

Kosugi S, Momozawa Y, Liu X.-X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 2019; 20(1): 117.

[143]

Azzarà A, Rendeli C, Crivello AM, et al. Identification of new candidate genes for spina Bifida through exome sequencing. Childs Nerv Syst.2021; 37(8): 2589-2596.

[144]

Cao X.-Y, Tian T, Steele JW, et al. Loss of RAD9B impairs early neural development and contributes to the risk for human spina Bifida. Hum Mutat. 2020; 41(4): 786-799.

[145]

DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5): 491-498.

[146]

Au KS, Hebert L, Hillman P, et al. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with Cilium, WNT-signaling, ECM cytoskeleton and cell migration. Sci Rep. 2021; 11(1):3639.

[147]

Han X, Cao X.-Y, Aguiar-Pulido V, et al. CIC missense variants contribute to susceptibility for spina Bifida. Hum Mutat. 2022; 43(12): 2021-2032.

[148]

Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43(1110):11.10.1-11.10.33.

[149]

Franke B, Vermeulen SHHM, Steegers-Theunissen RPM, et al. An association study of 45 folate-related genes in spina Bifida: involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res A Clin Mol Teratol. 2009; 85(3): 216-226.

[150]

Lei Y.-P, Kim SE, Chen Z.-Z, et al. Variants identified in PTK7 associated with neural tube defects. Mol Genet Genomic Med. 2019; 7(4):e00584.

[151]

Connealy BD, Northrup H, Au KS. Genetic variations in the GLUT3 gene associated with myelomeningocele. Am J Obstet Gynecol. 2014; 211(3): 305.e1-305.e8.

[152]

Shah RH, Northrup H, Hixson JE, Morrison AC, Au KS. Genetic association of the Glycine cleavage system genes and myelomeningocele. Birth Defects Res A Clin Mol Teratol. 2016; 106(10): 847-853.

[153]

Tindula G, Issac B, Mukherjee SK, et al. Genome-wide analysis of spina Bifida risk variants in a case-control study from Bangladesh. Birth Defects Res. 2024; 116(3):e2331.

[154]

Wolujewicz P, Aguiar-Pulido V, AbdelAleem A, et al. Genome-wide investigation identifies a rare copy-number variant burden associated with human spina Bifida. Genet Med. 2021; 23(7): 1211-1218.

[155]

Moehrlen U, Ochsenbein-Kölble N, Stricker S, et al. Prenatal spina Bifida repair: defendable trespassing of MOMS criteria results in commendable personalized medicine. Fetal Diagn Ther. 2023; 50(6): 454-463.

RIGHTS & PERMISSIONS

2025 The Author(s). Pediatric Discovery published by John Wiley & Sons Australia, Ltd on behalf of Children's Hospital of Chongqing Medical University.

AI Summary AI Mindmap
PDF

4

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/