RNA modifications in health and disease: from mechanistic insights to therapeutic applications

Yiting Chen , Dulin Ding , Xing Tang , Rui Ma , Jian-Kang Zhou

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) : pbaf035

PDF (4342KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) :pbaf035 DOI: 10.1093/pcmedi/pbaf035
Review
research-article

RNA modifications in health and disease: from mechanistic insights to therapeutic applications

Author information +
History +
PDF (4342KB)

Abstract

RNA modifications encompass a series of dynamic chemical changes and editing events on RNA molecules, playing a pivotal role in essential physiological processes such as embryonic development, immune response, and the maintenance of cell homeostasis. By influencing RNA stability, splicing, translation, and intermolecular interactions, RNA modifications serve as crucial mechanisms regulating gene expression at the post-transcriptional level. Dysregulation of the modification machineries or aberrant modification patterns is closely associated with the onset and progression of various diseases, including tumors, metabolic disorders, cardiovascular diseases, and neurological and immune conditions, making them potential biomarkers for disease diagnosis, prognosis, and treatment. In this review, we summarize the molecular mechanisms of major RNA modifications, emphasize their functions in health and disease, and discuss their diagnostic and therapeutic value in pathological contexts.

Keywords

RNA modification / methylation / m6A / pseudouridine / ac4C / RNA editing

Cite this article

Download citation ▾
Yiting Chen, Dulin Ding, Xing Tang, Rui Ma, Jian-Kang Zhou. RNA modifications in health and disease: from mechanistic insights to therapeutic applications. Precision Clinical Medicine, 2025, 8(4): pbaf035 DOI:10.1093/pcmedi/pbaf035

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by Sichuan Province Science and Technology Support Program (grant No. 2022NSFSC0761), Chengdu Medical College Research Foundation (grant No. KYPY22-02), Chengdu Medical College Excellent-talent Program (grant No. 2024qnGzn09), and Chengdu Medical College Graduate Research Innovation Fund (grant No. YCX2025-01-68). Figures in this article were created with BioGDP (https://www.biogdp.com).

Author contributions

Yiting Chen (Data curation, Resources, Software, Writing - original draft, Writing - review & editing), Dulin Ding (Data curation, Resources, Software, Writing - original draft, Writing - review & editing), Xing Tang (Data curation, Resources, Software, Writing - original draft), Rui Ma (Resources, Writing - review & editing), and Jian-Kang Zhou (Conceptualization, Funding acquisition, Project administration, Supervision, Writing - original draft, Writing - review & editing).

Conflict of interest

None declared.

References

[1]

Moshitch-Moshkovitz S, Dominissini D, Rechavi G. The epitranscriptome toolbox. Cell 2022;185:764-76. https://doi.org/10.1016/j.cell.2022.02.007.

[2]

Liang Z, Ye H, Ma J et al. m6A-Atlas v2.0: updated resources for unraveling the N6-methyladenosine (m6A) epitranscriptome among multiple species. Nucleic Acids Res 2024;52:D194-202. https://doi.org/10.1093/nar/gkad691.

[3]

Gilbert WV, Nachtergaele S. mRNA regulation by RNA modifications. Annu Rev Biochem 2023;92:175-98. https://doi.org/10.1146/annurev-biochem-052521-035949.

[4]

Cohn WE, Volkin E. Nucleoside-5'-phosphates from ribonucleic acid. Nature 1951;167:483-4. https://doi.org/10.1038/167483a0.

[5]

Bose SR. Deoxyribonucleic acid and ribonucleic acid in hyphal cells of higher fungi. Nature 1955;175:735. https://doi.org/10.1038/175735a0.

[6]

Amos H, Korn M. 5-Methyl cytosine in the RNA of Escherichia coli. Biochim Biophys Acta 1958;29:444-5. https://doi.org/10.1016/0006-3002(58)90214-2.

[7]

Dunn DB. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta 1961;46:198-200. https://doi.org/10.1016/0006-3002(61)90668-0.

[8]

Disney MD. A glimpse at the glycoRNA world. Cell 2021;184:3080-1. https://doi.org/10.1016/j.cell.2021.05.025.

[9]

Flynn RA, Pedram K, Malaker SA et al. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 2021;184:3109-24. https://doi.org/10.1016/j.cell.2021.04.023.

[10]

Wiener D, Schwartz S. The epitranscriptome beyond m(6)A. Nat Rev Genet 2021;22:119-31. https://doi.org/10.1038/s41576-020-0 0295-8.

[11]

Höfer K, Jäschke A. Epitranscriptomics: RNA modifications in bacteria and archaea. Microbiol Spectr 2018;6:RWR-0015-2017. https://doi.org/10.1128/microbiolspec.RWR-0015-2017.

[12]

Yi C, Pan T. Cellular dynamics of RNA modification. Acc Chem Res 2011;44:1380-8. https://doi.org/10.1021/ar200057m.

[13]

Wilkinson E, Cui YH, He YY. Roles of RNA modifications in diverse cellular functions. Front Cell Dev Biol 2022;10:828683. https://doi.org/10.3389/fcell.2022.828683.

[14]

Lewis CJ, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol 2017;18:202-10. https://doi.org/10.1038/nrm.2016.163.

[15]

Roundtree IA, Evans ME, Pan T et al. Dynamic RNA modifications in gene expression regulation. Cell 2017;169:1187-200. https://doi.org/10.1016/j.cell.2017.05.045.

[16]

Janin M, Coll-SanMartin L, Esteller M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer 2020;19:70. https://doi.org/10.1186/s12943-020-01192-8.

[17]

An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer 2022;21:14. https://doi.org/10.1186/s12943-022-01500-4.

[18]

Faucillion M-L, Johansson A-M, Larsson J. Modulation of RNA stability regulates gene expression in two opposite ways: through buffering of RNA levels upon global perturbations and by supporting adapted differential expression. Nucleic Acids Res 2022;50:4372-88. https://doi.org/10.1093/nar/gkac208.

[19]

Frye M, Harada BT, Behm M et al. RNA modifications modulate gene expression during development. Science 2018;361:1346-9. https://doi.org/10.1126/science.aau1646.

[20]

Wang C, Hou X, Guan Q et al. RNA modification in cardiovascular disease: implications for therapeutic interventions. Sig Transduct Target Ther 2023;8:412. https://doi.org/10.1038/s41392-023-01638-7.

[21]

Vasilopoulou AG, Kalafati E, Drakopoulou E et al. m(6)A mRNA methylation in hematopoiesis: the importance of writing, erasing, and reading. Cells 2025;14:1388. https://doi.org/10.3390/cells14171388.

[22]

Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019;20:608-24. https://doi.org/10.1038/s41580-019-0168-5.

[23]

Deng X, Su R, Weng H et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res 2018;28:507-17. https://doi.org/10.1038/s41422-018-0034-6.

[24]

Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer 2019;18:103. https://doi.org/10.1186/s12943-019-1033-z.

[25]

Casella G, Tsitsipatis D, Abdelmohsen K et al. mRNA methylation in cell senescence. Wiley Interdiscip Rev RNA 2019;10:e1547. https://doi.org/10.1002/wrna.1547.

[26]

Pinello N, Sun S, Wong JJ. Aberrant expression of enzymes regulating m(6)A mRNA methylation: implication in cancer. Cancer Biol Med 2018;15:323-34. https://doi.org/10.20892/j.issn.2095-3941.2018.0365.

[27]

Zhang Y, Chen W, Zheng X et al. Regulatory role and mechanism of m6A RNA modification in human metabolic diseases. Mol Ther Oncolytics 2021;22:52-63. https://doi.org/10.1016/j.omto.2021.05.003.

[28]

Tang Q, Li L, Wang Y et al. RNA modifications in cancer. BrJ Cancer 2023;129:204-21. https://doi.org/10.1038/s41416-023-02275-1.

[29]

Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in can-cer. Cancer Cell 2020;37:270-88. https://doi.org/10.1016/j.ccell.2020.02.004.

[30]

Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 1974;71:3971-5. https://doi.org/10.1073/pnas.71.10.3971.

[31]

Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012;485:201-6. https://doi.org/10.1038/nature11112.

[32]

Knuckles P, Lence T, Haussmann IU et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNAbinding factor Rbm15/spenito to the m(6)A machinery component wtap/Fl(2) d. Genes Dev 2018;32:415-29. https://doi.org/10.1101/gad.309146.117.

[33]

Schwartz S, Mumbach MR, Jovanovic M et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep 2014;8:284-96. https://doi.org/10.1016/j.celrep.2014.05.048.

[34]

Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023;21:334. https://doi.org/10.1186/s12964-023-01360-5.

[35]

Liu J, Yue Y, Han D et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014;10:93-5. https://doi.org/10.1038/nchembio.1432.

[36]

Wang J, Li Y, Wang P et al. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell 2020;27:81-97. https://doi.org/10.1016/j.stem.2020.04.001.

[37]

Ping XL, Sun BF, Wang L et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014;24:177-89. https://doi.org/10.1038/cr.2014.3.

[38]

Sendinc E, Shi Y. RNA m6A methylation across the transcriptome. Mol Cell 2023;83:428-41. https://doi.org/10.1016/j.molcel.2023.01.006.

[39]

Pendleton KE, Chen B, Liu K et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 2017;169:824-35. https://doi.org/10.1016/j.cell.2017.05.003.

[40]

Ma H, Wang X, Cai J et al. N(6-)methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol 2019;15:88-94. https://doi.org/10.1038/s41589-018-0184-3.

[41]

Sepich-Poore C, Zheng Z, Schmitt E et al. The METTL5-TRMT112 N(6)-methyladenosine methyltransferase complex regulates mRNA translation via 18 S rRNA methylation. J Biol Chem 2022;298:101590. https://doi.org/10.1016/j.jbc.2022.101590.

[42]

Fedeles BI, Singh V, Delaney JC et al. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem Aug 21 2015;290:20734-42. https://doi.org/10.1074/jbc.R115.656462.

[43]

Zhao X, Yang Y, Sun BF et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014;24:1403-19. https://doi.org/10.1038/cr.2014.151.

[44]

Zheng G, Dahl JA, Niu Y et al. ALKBH 5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013;49:18-29. https://doi.org/10.1016/j.molcel.2012.10.015.

[45]

Martin Carli JF, LeDuc CA, Zhang Y et al. FTO mediates cell-autonomous effects on adipogenesis and adipocyte lipid content by regulating gene expression via 6 mA DNA modifications. J Lipid Res 2018;59:1446-60. https://doi.org/10.1194/jlr.M085555.

[46]

Zhang L, Wei J, Zou Z et al. RNA modification systems as therapeutic targets. Nat Rev Drug Discov 2025. https://doi.org/10.1038/s41573-025-01280-8.

[47]

Deng X, Qing Y, Horne D et al. The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol 2023;20:507-26. https://doi.org/10.1038/s41571-023-00774-x.

[48]

Wang X, Zhao BS, Roundtree IA et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161:1388-99. https://doi.org/10.1016/j.cell.2015.05.014.

[49]

Wang X, Lu Z, Gomez A et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117-20. https://doi.org/10.1038/nature12730.

[50]

Xiao S, Duan S, Caligiuri MA et al. YTHDF2: a key RNA reader and antitumor target. Trends Immunol 2025;46:485-98. https://doi.org/10.1016/j.it.2025.04.003.

[51]

Shi H, Wang X, Lu Z et al. YTHDF 3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 2017;27:315-28. https://doi.org/10.1038/cr.2017.15.

[52]

Hsu PJ, Zhu Y, Ma H et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017;27:1115-27. https://doi.org/10.1038/cr.2017.99.

[53]

Roundtree IA, Luo GZ, Zhang Z et al. YTHDC 1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. eLife 2017;6:e31311. https://doi.org/10.7554/eLife.31311.

[54]

Xu C, Wang X, Liu K et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 2014;10:927-9. https://doi.org/10.1038/nchembio.1654.

[55]

Huang H, Weng H, Sun w et al. Recognition of RNA N(6)methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018;20:285-95. https://doi.org/10.1038/s41556-018-0045-z.

[56]

Weng H, Huang F, Yu Z et al. The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell 2022;40:1566-82. https://doi.org/10.1016/j.ccell.2022.10.004.

[57]

Liu N, Zhou KI, Parisien M et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 2 2017;45:6051-63. https://doi.org/10.1093/nar/gkx141.

[58]

Alarcon CR, Goodarzi H, Lee H et al. HNRNPA2B 1 is a mediator of m(6)A-dependent nuclear ma processing events. Cell 2015;162:1299-308. https://doi.org/10.1016/j.cell.2015.08.011.

[59]

Wu Y, Wang Z, Han L et al. PRMT 5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther 2022;30:2603-17. https://doi.org/10.1016/j.ymthe.2022.03.003.

[60]

Chen DH, Zhang JG, Wu CX et al. Non-coding RNA m6A modification in cancer: mechanisms and therapeutic targets. Front Cell Dev Biol 2021;9:778582. https://doi.org/10.3389/fcell.2021.778582.

[61]

Alarcón CR, Lee H, Goodarzi H et al. N6-methyladenosine marks primary microRNAs for processing. Nature 2015;519:482-5. https://doi.org/10.1038/nature14281.

[62]

Fazi F, Fatica A. Interplay between N (6)-methyladenosine (m(6)A) and non-coding RNAs in cell development and cancer. Front Cell Dev Biol 2019;7:116. https://doi.org/10.3389/fcell.2019.00116.

[63]

Yang Y, Fan X, Mao M et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 2017;27:626-41. https://doi.org/10.1038/cr.2017.31.

[64]

Lyu Y, Zhang Y, Wang Y et al. HIF- 1α regulated WTAP overexpression promoting the warburg effect of ovarian cancer by m6A-dependent manner. J Immunol Res 2022;2022:6130806. https://doi.org/10.1155/2022/6130806.

[65]

Fan Z, Yang G, Zhang W et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med 2021;25:10197-212. https://doi.org/10.1111/jcmm.16957.

[66]

Liu K, He X, Huang J et al. Short-chain fatty acid-butyric acid ameliorates granulosa cells inflammation through regulating METTL3-mediated N6-methyladenosine modification of FOSL 2 in polycystic ovarian syndrome. Clin Epigenetics3 2023;15:86. https://doi.org/10.1186/s13148-023-01487-9.

[67]

Vu LP, Pickering BF, Cheng Y et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 2017;23:1369-76. https://doi.org/10.1038/nm.4416.

[68]

Weng H, Huang H, Wu H et al. METTL 14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell 2018;22:191-205. https://doi.org/10.1016/j.stem.2017.11.016.

[69]

Su R, Dong L, Li C et al. R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 2018;172:90-105. https://doi.org/10.1016/j.cell.2017.11.031.

[70]

Han J, Wang JZ, Yang X et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 2019;18:110. https://doi.org/10.1186/s12943-019-1036-9.

[71]

Zhang S, Zhao BS, Zhou A et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017;31:591-606. https://doi.org/10.1016/j.ccell.2017.02.013.

[72]

Chen M, Wei L, Law CT et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018;67:2254-70. https://doi.org/10.1002/hep.29683.

[73]

Chen Y, Peng C, Chen J et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer 2019;18:127. https://doi.org/10.1186/s12943-019-1053-8.

[74]

Hou J, Zhang H, Liu J et al. YTHDF 2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 2019;18:163. https://doi.org/10.1186/s12943-019-1082-3.

[75]

Ma JZ, Yang F, Zhou CC et al. METTL 14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6)-methyladenosine-dependent primary MicroRNA processing. Hepatology 2017;65:529-43. https://doi.org/10.1002/hep.28885.

[76]

Wang M, Liu J, Zhao Y et al. Upregulation of METTL 14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer 2020;19:130. https://doi.org/10.1186/s12943-020-01249-8.

[77]

Fang R, Chen X, Zhang S et al. EGFR/SRC/ERK-stabilized YTHDF 2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 2021;12:177. https://doi.org/10.1038/s41467-020-20379-7.

[78]

Zhu D, Liu Y, Chen J et al. The methyltransferase METTL 3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. J Transl Med 2022;20:298. https://doi.org/10.1186/s12967-022-03496-3.

[79]

Zhang C, Chen L, Liu Y et al. Downregulated METTL14 accumulates BPTF that reinforces super-enhancers and distal lung metastasis via glycolytic reprogramming in renal cell carci-noma. Theranostics 2021;11:3676-93. https://doi.org/10.7150/thno.55424.

[80]

Peng W, Li J, Chen R et al. Upregulated METTL 3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res 2019;38:393. https://doi.org/10.1186/s13046-019-1408-4.

[81]

Liu N, Jiang X, Zhang G et al. LncRNA CARMN m6A demethylation by ALKBH 5 inhibits mutant p53-driven tumour progression through miR-5683/FGF2. Clin Transl Med 2024;14:e1777. https://doi.org/10.1002/ctm2.1777.

[82]

Chang G, Shi L, Ye Y et al. YTHDF 3 induces the translation of m(6)A -enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell 2020;38:857-871.e7. https://doi.org/10.1016/j.ccell.2020.10.004.

[83]

Wang Q, Chen C, Ding Q et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020;69:1193-205. https://doi.org/10.1136/gutjnl-2019-319639.

[84]

Gu C, Wang Z, Zhou N et al. Mettl 14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)methyladenosine of Notch1. Mol Cancer 2019;18:168. https://doi.org/10.1186/s12943-019-1084-1.

[85]

Chen X, Xu M, Xu X et al. METTL14-mediated N6methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 2020;19:106. https://doi.org/10.1186/s12943-020-01220-7.

[86]

Zhang K, Zhang T, Yang Y et al. N(6)-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics 2022;12:4802-17. https://doi.org/10.7150/thno.73746.

[87]

Zhang M, Yang C, Ruan X et al. CPEB2 m6A methylation regulates blood-tumor barrier permeability by regulating splicing factor SRSF5 stability. Commun Biol 2022;5:908. https://doi.org/10.1038/s42003-022-03878-9.

[88]

Paris J, Morgan M, Campos J et al. Targeting the RNA m(6)A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 2019;25:137-48. https://doi.org/10.1016/j.stem.2019.03.021.

[89]

Huang H, Wang Y, Kandpal M et al. FTO-dependent N(6)methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res 2020;80:3200-14. https://doi.org/10.1158/0008-5472.Can-19-4044.

[90]

Cheng Y, Xie W, Pickering BF et al. N(6)-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 2021;39:958-72. https://doi.org/10.1016/j.ccell.2021.04.017.

[91]

Hou Y, Zhang Q, Pang W et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ 2021;28:3105-24. https://doi.org/10.1038/s41418-021-00804-0.

[92]

Yao Y, Bi Z, Wu R et al. METTL 3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/ebp β pathway via an m(6)A-YTHDF2-dependent manner. FASEB J 2019;33:752944. https://doi.org/10.1096/fj.201802644R.

[93]

Wang Y, Gao M, Zhu F et al. METTL 3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat Commun 2020;11:1648. https://doi.org/10.1038/s41467-020-15488-2.

[94]

Wang L, Wang Y, Ding K et al. YTHDC 1 promotes postnatal brown adipose tissue development and thermogenesis by sta-bilizing PPARgamma. EMBO J 2025;44:3360-80. https://doi.org/10.1038/s44318-025-00460-x.

[95]

Wu R, Chen Y, Liu Y et al. m6A methylation promotes white-tobeige fat transition by facilitating Hif1a translation. EMBO Rep 2021;22:e52348. https://doi.org/10.15252/embr.202052348.

[96]

Yan S, Zhou X, Wu C et al. Adipocyte YTH N(6)-methyladenosine RNA-binding protein 1 protects against obesity by promoting white adipose tissue beiging in male mice. Nat Commun 2023;14:1379. https://doi.org/10.1038/s41467-023-37100-z.

[97]

Wang X, Wu R, Liu Y et al. m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 2020;16:1221-35. https://doi.org/10.1080/15548627.2019.1659617.

[98]

Li Y, Zhang Q, Cui G et al. m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genomics Proteomics Bioinformatics 2020;18:371-83. https://doi.org/10.1016/j.gpb.2020.06.003.

[99]

Peng Z, Gong Y, Wang X et al. METTL3-m(6)A-rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Mol Ther 2022;30:932-46. https://doi.org/10.1016/j.ymthe.2021.09.016.

[100]

Yang Y, Cai J, Yang X et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther 2022;30:234253. https://doi.org/10.1016/j.ymthe.2022.02.021.

[101]

Tang Z, Sun C, Yan Y et al. Aberrant elevation of FTO levels promotes liver steatosis by decreasing the m6A methylation and increasing the stability of SREBF1 and ChREBP mRNAs. J Mol Cell Biol 2023;14:mjac061. https://doi.org/10.1093/jmcb/mjac061.

[102]

Wang H, Wang Y, Lai S et al. LINC 01468 drives NAFLD-HCC progression through CUL4A-linked degradation of SHIP2. Cell Death Discov 2022;8:449. https://doi.org/10.1038/s41420-022-01234-8.

[103]

Zhou B, Liu C, Xu L et al. N(6)-methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mrna stability of lipogenic genes. Hepatology 2021;73:91-103. https://doi.org/10.1002/hep.31220.

[104]

Li X, Jiang Y, Sun X et al. METTL 3 is required for maintaining beta-cell function. Metabolism 2021;116:154702. https://doi.org/10.1016/j.metabol.2021.154702.

[105]

Liu J, Luo G, Sun J et al. METTL 14 is essential for beta-cell survival and insulin secretion. Biochim Biophys Acta Mol Basis Dis 2019;1865:2138-48. https://doi.org/10.1016/j.bbadis.2019.04.011.

[106]

Li X, Yang Y, Li Z et al. Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice. Diabetologia 2023;66:1084-96. https://doi.org/10.1007/s00125-023-05900-z.

[107]

Yang Y, Shen F, Huang W et al. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J Clin Endocrinol Metab 2019;104:665-73. https://doi.org/10.1210/jc.2018-00619.

[108]

Jiang L, Liu X, Hu X et al. METTL3-mediated m(6)A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther 2022;30:1721-40. https://doi.org/10.1016/j.ymthe.2022.01.002.

[109]

Lan J, Xu B, Shi X et al. WTAP-mediated N(6)-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell Mol Biol Lett 2022;27:51. https://doi.org/10.1186/s11658-022-00350-8.

[110]

Hemmati M, Kashanipoor S, Mazaheri P et al. Importance of gut microbiota metabolites in the development of cardiovascular diseases (CVD). Life Sci 2023;329:121947. https://doi.org/10.1016/j.lfs.2023.121947.

[111]

Jian D, Wang Y, Jian L et al. METTL 14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics 2020;10:8939-56. https://doi.org/10.7150/thno.45178.

[112]

Li Q, Yu L, Gao A et al. METTL 3 (methyltransferase like 3)dependent N6-methyladenosine modification on Braf mRNA promotes macrophage inflammatory response and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2023;43:755-73. https://doi.org/10.1161/ATVBAHA.122.318451.

[113]

Zhang X, Li X, Jia H et al. The m(6)A methyltransferase METTL3 modifies PGC-1alpha mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem 2021;297:101058. https://doi.org/10.1016/j.jbc.2021.101058.

[114]

Zhang G, Li X, Huang X. m6A-related bioinformatics analysis and functional characterization reveals that METTL3mediated NPC1L1 mRNA hypermethylation facilitates progression of atherosclerosis via inactivation of the MAPK pathway. Inflamm Res 2023;72:429-42. https://doi.org/10.1007/s00011-022-01681-0.

[115]

Mo C, Yang M, Han X et al. Fat mass and obesity-associated protein attenuates lipid accumulation in macrophage foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Hypertens 2017;35:810-21. https://doi.org/10.1097/hjh.0000000000001255.

[116]

Kruger N, Biwer LA, Good ME et al. Loss of endothelial FTO antagonizes obesity-induced metabolic and vascular dysfunction. Circ Res 2020;126:232-42. https://doi.org/10.1161/CIRCRESAHA.119.315531.

[117]

Dorn LE, Lasman L, Chen J et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 2019;139:533-45. https://doi.org/10.1161/circulationaha.118.036146.

[118]

Gao XQ, Zhang YH, Liu F et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020;22:1319-31. https://doi.org/10.1038/s41556-020-0576-y.

[119]

Hinger SA, Wei J, Dorn LE et al. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol 2021;151:46-55. https://doi.org/10.1016/j.yjmcc.2020.11.002.

[120]

Berulava T, Buchholz E, Elerdashvili V et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2020;22:54-66. https://doi.org/10.1002/ejhf.1672.

[121]

Zhang B, Jiang H, Wu J et al. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther 2021;6:377. https://doi.org/10.1038/s41392-021-00699-w.

[122]

Mathiyalagan P, Adamiak M, Mayourian J et al. FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation 2019;139:518-32. https://doi.org/10.1161/circulationaha.118.033794.

[123]

Song H, Feng X, Zhang H et al. METTL3 and ALKBH 5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 2019;15:1419-37. https://doi.org/10.1080/15548627.201 9.1586246.

[124]

Zhou T, Han D, Liu J et al. Factors influencing osteogenic differentiation of human aortic valve interstitial cells. J Thorac Cardiovasc Surg 2021;161:e163-85. https://doi.org/10.1016/j.jtcvs.2019 10.039.

[125]

Xu S, Xu X, Zhang Z et al. The role of RNA m(6)A methylation in the regulation of postnatal hypoxia-induced pulmonary hy-pertension. Respir Res 2021;22:121. https://doi.org/10.1186/s12931-021-01728-6.

[126]

Su H, Wang G, Wu L et al. Transcriptome-wide map of m(6) A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. Bmc Genomics [Electronic Resource] 2020;21:39. https://doi.org/10.1186/s12864-020-6462-y.

[127]

Chang M, Lv H, Zhang W et al. Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 2017;7:170166. https://doi.org/10.1098/rsob.170166.

[128]

Meyer KD, Saletore Y, Zumbo P et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012;149:1635-46. https://doi.org/10.1016/j.ce11.2012.05.003.

[129]

Ma C, Chang M, Lv H et al. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol 2018;19:68. https://doi.org/10.1186/s13059-018-1435-z.

[130]

Zheng L, Tang X, Lu M et al. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF 1 to inhibit p65 mRNA translation. Int Immunopharmacol 2020;88:106937. https://doi.org/10.1016/j.intimp.2020.106937.

[131]

Yu J, Zhang Y, Ma H et al. Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury. Mol Brain 2020;13:11. https://doi.org/10.1186/s13041-020-0554-0.

[132]

Han M, Liu Z, Xu Y et al. Abnormality of m6A mRNA methylation is involved in Alzheimer's disease. Front Neurosci 2020;14:98. https://doi.org/10.3389/fnins.2020.00098.

[133]

Maity A, Das B. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. FEBS J 2016;283:1607-30. https://doi.org/10.1111/febs.13614.

[134]

Hess ME, Hess S, Meyer KD et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 2013;16:1042-8. https://doi.org/10.1038/nn.3449.

[135]

Pei Y, Lou X, Li K et al. Peripheral blood leukocyte N6methyladenosine is a noninvasive biomarker for non-smallcell lung carcinoma. Onco Targets Ther 2020;13:11913-21. https://doi.org/10.2147/ott.S267344.

[136]

Xie J, Huang Z, Jiang P et al. Elevated N6-methyladenosine RNA levels in peripheral blood immune cells: a novel predictive biomarker and therapeutic target for colorectal cancer. Front Immunol 2021;12:760747. https://doi.org/10.3389/fimmu.2021.760747.

[137]

Zhu Y, Li J, Yang H et al. The potential role of m6A reader YTHDF 1 as diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis in pan-cancer. Cell Death Discov 2023;9:34. https://doi.org/10.1038/s41420-023-01321-4.

[138]

Yu M, Ji W, Yang X et al. The role of m6A demethylases in lung cancer: diagnostic and therapeutic implications. Front Immunol 2023;14:1279735. https://doi.org/10.3389/fimmu.2023.1279735.

[139]

Chen H, Gao S, Liu W et al. RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 2021;160:1284-300. https://doi.org/10.1053/j.gastro.2020.11.013.

[140]

Yue B, Song C, Yang L et al. METTL3-mediated N6methyladenosine modification is critical for epithelialmesenchymal transition and metastasis of gastric cancer. Mol Cancer 2019;18:142. https://doi.org/10.1186/s12943-019-1065-4.

[141]

Zhu GS, Tang LY, Lv DL et al. Total flavones of abelmoschus manihot exhibits pro-angiogenic activity by activating the VEGF-A/VEGFR2-PI3K/akt signaling axis. Am J Chin Med 2018;46:567-83. https://doi.org/10.1142/s0192415×18500295.

[142]

Zhou S, Sun Y, Xing Y et al. Exenatide ameliorates hydrogen peroxide-induced pancreatic β-cell apoptosis through regulation of METTL3-mediated m(6)A methylation. Eur J Pharmacol 2022;924:174960. https://doi.org/10.1016/j.ejphar.2022.174960.

[143]

Wu T, Shao Y, Li X et al. NR3C1/Glucocorticoid receptor activation promotes pancreatic beta-cell autophagy overload in response to glucolipotoxicity. Autophagy 2023;19:2538-57. https://doi.org/10.1080/15548627.2023.2200625.

[144]

Peng S, Xiao W, Ju D et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 2019;11:eaau7116. https://doi.org/10.1126/scitranslmed.aau7116.

[145]

Rong B, Feng R, Liu C et al. Reduced delivery of epididymal adipocyte-derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice. J Pineal Res 2019;66:e12561. https://doi.org/10.1111/jpi.12561.

[146]

Chen B, Ye F, Yu L et al. Development of cell-active N6methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 2012;134:17963-71. https://doi.org/10.1021/ja3064149.

[147]

Huang Y, Yan J, Li Q et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 2015;43:373-84. https://doi.org/10.1093/nar/gku1276.

[148]

Cui Q, Shi H, Ye P et al. m(6)A RNA methylation regulates the selfrenewal and tumorigenesis of glioblastoma stem cells. Cell Rep 2017;18:2622-34. https://doi.org/10.1016/j.celrep.2017.02.059.

[149]

Qing Y, Dong L, Gao L et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell 2021;81:922-39. https://doi.org/10.1016/j.molcel.2020.12.026.

[150]

Xie G, Wu XN, Ling Y et al. A novel inhibitor of N (6)methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharm Sin B 2022;12:853-66. https://doi.org/10.1016/j.apsb.2021.08.028.

[151]

Wang C, Li MC, Huang WG et al. Betaine inhibits the stem celllike properties of hepatocellular carcinoma by activating autophagy via SAM/m(6)A/YTHDF1-mediated enhancement on ATG3 stability. Theranostics 2025;15:1949-65. https://doi.org/10.7150/thno.102682.

[152]

Wu J, Xian S, Zhang S et al. Gan-Jiang-Ling-Zhu decoction improves steatohepatitis induced by choline-deficient-high-fat-diet through the METTL14/N6-methyladenosine-mediated Ugt2a 3 expression.J Ethnopharmacol 2025;339:119153. https://doi.org/10.1016/j.jep.2024.119153.

[153]

Yankova E, Blackaby W, Albertella M et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021;593:597-601. https://doi.org/10.1038/s41586-021-03536-w.

[154]

Sun K, Du Y, Hou Y et al. Saikosaponin D exhibits antileukemic activity by targeting FTO/m(6)A signaling. Theranostics 2021;11:5831-46. https://doi.org/10.7150/thno.55574.

[155]

Dolbois A, Bedi RK, Bochenkova E et al. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J Med Chem 2021;64:12738-60. https://doi.org/10.1021/acs.jmedchem.1c00773.

[156]

Han H, Li Z, Feng Y et al. Peptide degrader-based targeting of METTL3/ 14 improves immunotherapy response in cutaneous melanoma. Angew Chem Int Ed Engl 2024;63:e202407381. https://doi.org/10.1002/anie.202407381.

[157]

Mahapatra L, Andruska N, Mao C et al. A novel IMP 1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl Oncol 2017;10:818-27. https://doi.org/10.1016/j.tranon.2017.07.008.

[158]

Feng P, Chen D, Wang X et al. Inhibition of the m(6)A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia 2022;36:2180-8. https://doi.org/10.1038/s41375-022-01651-9.

[159]

Sun X, Huang X, Liu L et al. Anti-cancer role of curcumin in prostate cancer cells via regulation of m6Amodified circ0030568-FMR1 signaling pathway. Transl Androl Urol 2024;13:2358-75. https://doi.org/10.21037/tau-24-276.

[160]

Wang L, Fan YF, Li BR et al. Maslinic acid suppresses high glucose-induced inflammation by epigenetically inhibiting TXNIP expression. Curr Med Sci 2022;42:1213-9. https://doi.org/10.1007/s11596-022-2657-6.

[161]

Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res 1999;27:3138-45. https://doi.org/10.1093/nar/27.15.3138.

[162]

Li M, Tao Z, Zhao Y et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med 2022;20:214. https://doi.org/10.1186/s12967-022-03427-2.

[163]

Fonagy A, Swiderski C, Wilson A et al. Cell cycle regulated expression of nucleolar antigen P120 in normal and transformed human fibroblasts. J Cell Physiol 1993;154:16-27. https://doi.org/10.1002/jcp. 1041540104.

[164]

Sharma S, Yang J, Watzinger P et al. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res 2013;41:9062-76. https://doi.org/10.1093/nar/gkt679.

[165]

Tuorto F, Liebers R, Musch T et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 2012;19:900-5. https://doi.org/10.1038/nsmb.2357.

[166]

Trixl L, Lusser A. The dynamic RNA modification 5methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA 2019;10:e1510. https://doi.org/10.1002/wrna.1510.

[167]

Nakano S, Suzuki T, Kawarada L et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol 2016;12:546-51. https://doi.org/10.1038/nchembio.2099.

[168]

Metodiev MD, Spahr H,Loguercio Polosa P et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12 S rRNA and coordination of mitoribosomal assembly. PLoS Genet 2014;10:e1004110. https://doi.org/10.1371/journal.pgen.1004110.

[169]

Burgess AL, David R, Searle IR. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC Plant Biol 2015;15:199. https://doi.org/10.1186/s12870-015-0580-8.

[170]

Haag S, Warda AS, Kretschmer J et al. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA 2015;21:1532-43. https://doi.org/10.1261/rna.051524.115.

[171]

Goll MG, Kirpekar F, Maggert KA et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006;311:395-8. https://doi.org/10.1126/science.1120976.

[172]

Rawluszko-Wieczorek AA, Siera A, Jagodzinski PP. TET proteins in cancer: current 'state of the art.'. Crit Rev Oncol Hematol 2015;96:425-36. https://doi.org/10.1016/j.critrevonc.2015.07.008.

[173]

Fu L, Guerrero CR, Zhong N et al. Tet-mediated formation of 5hydroxymethylcytosine in RNA. J Am Chem Soc 2014;136:115825. https://doi.org/10.1021/ja505305z.

[174]

Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 2015;136:24. https://doi.org/10.1186/s13072-015-0016-6.

[175]

He YF, Li BZ, Li Z et al. Tet-mediated formation of 5carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011;333:1303-7. https://doi.org/10.1126/science.1210944.

[176]

Guallar D, Bi X, Pardavila JA et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat Genet 2018;50:443-51. https://doi.org/10.1038/s41588-018-0060-9.

[177]

Lan J, Rajan N, Bizet M et al. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat Commun 2020;11:4956. https://doi.org/10.1038/s41467-020-18729-6.

[178]

Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012;139:1895-902. https://doi.org/10.1242/dev.070771.

[179]

Kawarada L, Suzuki T, Ohira T et al. ALKBH 1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res 2017;45:7401-15. https://doi.org/10.1093/nar/gkx354.

[180]

Zhao T, Zhang Z, Chen Z et al. Biological functions of 5-methylcytosine RNA-binding proteins and their potential mechanisms in human cancers. Front Oncol 2025;15:1534948. https://doi.org/10.3389/fonc.2025.1534948.

[181]

Dominissini D, Rechavi G. 5-methylcytosine mediates nuclear export of mRNA. Cell Res 2017;27:717-9. https://doi.org/10.1038/cr.2017.73.

[182]

Chen X, Li A, Sun BF et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol 2019;21:978-90. https://doi.org/10.1038/s41556-019-0361-y.

[183]

Yang H, Wang Y, Xiang Y et al. FMRP promotes transcriptioncoupled homologous recombination via facilitating TET1mediated m5C RNA modification demethylation. Proc Natl Acad Sci USA 2022;119:e2116251119. https://doi.org/10.1073/pnas.2116251119.

[184]

Zhang Y, Zhang LS, Dai Q et al. 5-methylcytosine (m(5)C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proc Natl Acad Sci USA 2022;119:e2123338119. https://doi.org/10.1073/pnas.2123338119.

[185]

Ding S, Liu H, Liu L et al. Epigenetic addition of m(5)C to HBV transcripts promotes viral replication and evasion of innate antiviral responses. Cell Death Dis 2024;15:39. https://doi.org/10.1038/s41419-023-06412-9.

[186]

Chen T, Xu ZG, Luo J et al. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab 2023;35:1782-98. https://doi.org/10.1016/j.cmet.2023.07.009.

[187]

Zou S, Huang Y, Yang Z et al. NSUN2 promotes colorectal cancer progression by enhancing SKIL mRNA stabilization. Clin Transl Med 2024;14:e1621. https://doi.org/10.1002/ctm2.1621.

[188]

Su J, Wu G, Ye Y et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene 2021;40:5814-28. https://doi.org/10.1038/s41388-021-01978-0.

[189]

Zuo S, Li L, Wen X et al. NSUN2-mediated m(5) C RNA methylation dictates retinoblastoma progression through pro-moting PFAS mRNA stability and expression. Clin Transl Med 2023;13:e1273. https://doi.org/10.1002/ctm2.1273.

[190]

Chen B, Deng Y, Hong Y et al. Metabolic recoding of NSUN2mediated m(5)C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m(5)C-ENO 1 positive feedback loop. Adu Sci (Weinh) 2024;11:e2309840. https://doi.org/10.1002/advs.202309840.

[191]

Xu X, Zhang Y, Zhang J et al. NSun 2 promotes cell migration through methylating autotaxin mRNA. J Biol Chem 2020;295:18134-47. https://doi.org/10.1074/jbc.RA119.012009.

[192]

Jin Y, Yao J, Fu J et al. ALYREF promotes the metastasis of nasopharyngeal carcinoma by increasing the stability of NOTCH1 mRNA. Cell Death Dis 2024;15:578. https://doi.org/10.1038/s41419-024-06959-1.

[193]

Smoczynski J, Yared MJ, Meynier V et al. Advances in the structural and functional understanding of m(1)A RNA modification. Acc Chem Res 2024;57:429-38. https://doi.org/10.1021/acs.accounts.3c00568.

[194]

Zhang C, Jia G. Reversible RNA modification N(1)methyladenosine (m(1)A) in mRNA and tRNA. Genomics Proteomics Bioinformatics 2018;16:155-61. https://doi.org/10.1016/j.gpb.2018.03.003.

[195]

Safra M, Sas-Chen A, Nir R et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 2017;551:251-5. https://doi.org/10.1038/nature24456.

[196]

Liu H, Zeng T, He C et al. Development of mild chemical catalysis conditions for m(1)A-to-m(6)A rearrangement on RNA. ACS Chem Biol 2022;17:1334-42. https://doi.org/10.1021/acschembio.2c00178.

[197]

Pajdzik K, Lyu R, Dou X et al. Chemical manipulation of m(1)A mediates its detection in human tRNA. RNA 2024;30:548-59. https://doi.org/10.1261/rna.079966.124.

[198]

Dai X, Wang T, Gonzalez G et al. Identification of YTH domaincontaining proteins as the readers for N1-methyladenosine in RNA. Anal Chem 2018;90:6380-4. https://doi.org/10.1021/acs.analchem.8b01703.

[199]

Wei J, Liu F, Lu Z et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 2018;71:973-85. https://doi.org/10.1016/j.molcel.2018.08.011.

[200]

Chujo T, Suzuki T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA 2012;18:2269-76. https://doi.org/10.1261/rna.0356 00.112.

[201]

Wang M, Zhu Y, Wang C et al. Crystal structure of the twosubunit tRNA m(1)A58 methyltransferase TRM6-TRM61 from Saccharomyces cerevisiae. Sci Rep 2016;6:32562. https://doi.org/10.1038/srep32562.

[202]

Liu F, Clark W, Luo G et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 2016;167:816-28. https://doi.org/10.1016/j.cell.2016.09.038.

[203]

Dango S, Mosammaparast N, Sowa ME et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol Cell 2011;44:373-84. https://doi.org/10.1016/j.molcel.2011.08.039.

[204]

Zhang L, Duan HC, Paduch M et al. The molecular basis of human ALKBH 3 mediated RNA N(1)-methyladenosine (m(1)A) demethylation. Angew Chem Int Ed Engl 2024;63:e202313900. https://doi.org/10.1002/anie.202313900.

[205]

Chen Z, Qi M, Shen B et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 2019;47:2533-45. https://doi.org/10.1093/nar/gky1250.

[206]

Wu Y, Chen Z, Xie G et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci USA 2022;119:e2119038119. https://doi.org/10.1073/pnas.2119038119.

[207]

Boo SH, Ha H, Kim YK. m(1)A and m(6)A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep 2022;40:111317. https://doi.org/10.1016/j.celrep.2022.111317.

[208]

Dai W, Yu NJ, Kleiner RE. Chemoproteomic approaches to studying RNA modification-associated proteins. Acc Chem Res 2023;56:2726-39. https://doi.org/10.1021/acs.accounts.3c00450.

[209]

Zheng Q Gan H, Yang F et al. Cytoplasmic m(1)A reader YTHDF3 inhibits trophoblast invasion by downregulation of m(1)A-methylated IGF1R. Cell Discov 2020;6:12. https://doi.org/10.1038/s41421-020-0144-4.

[210]

Tsao N, Lombardi PM, Park A et al. YTHDC 1 cooperates with the THO complex to prevent RNA-damage-induced DNA breaks. Mol Cell 2025;85:1085-100. https://doi.org/10.1016/j.molcel.2025.02.003.

[211]

Tao EW, Wang Y, Tan J et al. TRMT6-mediated tRNA m(1)A modification acts as a translational checkpoint of histone synthesis and facilitates colorectal cancer progression. Nat Cancer 2025;6:1458-76. https://doi.org/10.1038/s43018-025-00977-4.

[212]

Liu Y, Zhou J, Li X et al. tRNA-m(1)A modification promotes T cell expansion via efficient MYC protein synthesis. Nat Immunol 2022;23:1433-44. https://doi.org/10.1038/s41590-022-01301-3.

[213]

Zuo H, Wu A, Wang M et al. tRNA m(1)A modification regulate HSC maintenance and self-renewal via mTORC1 signaling. Nat Commun 2024;15:5706. https://doi.org/10.1038/s41467-024-50110-9.

[214]

Wang Y, Wang J, Li X et al. N(1)-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun 2021;12:6314. https://doi.org/10.1038/s41467-021-26718-6.

[215]

Foo M, Frietze LR, Enghiad B et al. Prokaryotic RNA N1methyladenosine erasers maintain tRNA m1A modification levels in Streptomyces venezuelae. Acs Chem Biol 2024;19:1616-25. https://doi.org/10.1021/acschembio.4c00278.

[216]

Li Q, Huang Y, Liu X et al. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage. J Biol Chem 2016;291:11083-93. https://doi.org/10.1074/jbc.M115.711895.

[217]

Zhang X, Qin N, Ji F et al. RNA m(1)A methyltransferase TRMT61A promotes colorectal tumorigenesis by enhancing ONECUT2 mRNA stability and is a potential therapeutic target. Cancer Commun (Lond) 2025;1-29.https://doi.org/10.1002/cac2.70070.

[218]

Wang Y, Wei J, Feng L et al. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol Cancer 2023;22:81. https://doi.org/10.1186/s12943-023-01780-4.

[219]

Martín A, Epifano C, Vilaplana-Marti B et al. Mitochondrial RNA methyltransferase TRMT61B is a new, potential biomarker and therapeutic target for highly aneuploid cancers. Cell Death Differ 2023;30:37-53. https://doi.org/10.1038/s41418-022-01044-6.

[220]

Liu K, Li Y, Yin F et al. Elucidating thoracic aortic dissection pathogenesis: the interplay of m1A-related gene expressions and miR-16-5p/YTHDC 1 axis in NLRP3-dependent pyroptosis. Int J Biol Macromol 2024;274:133293. https://doi.org/10.1016/j.ijbiomac.2024.133293.

[221]

Zhang X, Zhu WY, Shen SY et al. Biological roles of RNA m7G modification and its implications in cancer. Biol Direct 2023;18:58. https://doi.org/10.1186/s13062-023-00414-5.

[222]

Shi H, Moore PB. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 2000;6:1091-105. https://doi.org/10.1017/s1355838200000364.

[223]

Li J, Wang L, Hahn Q et al. Structural basis of regulated m(7)G tRNA modification by METTL1-WDR4. Nature 2023;613:391-7. https://doi.org/10.1038/s41586-022-05566-4.

[224]

Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 2002;8:1253-66. https://doi.org/10.1017/s1355838202024019.

[225]

Lin S, Liu Q, Lelyveld VS et al. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 2018;71:244-55. https://doi.org/10.1016/j.molcel.2018.06.001.

[226]

Shaheen R, Abdel-Salam GM, Guy MP et al. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism. Genome Biol 2015;16:210. https://doi.org/10.1186/s13059-015-0779-x.

[227]

Orellana EA, Liu Q, Yankova E et al. METTL1-mediated m(7)G modification of arg-TCT tRNA drives oncogenic transformation. Mol Cell 2021;81:3323-38. https://doi.org/10.1016/j.molcel.2021.06.031.

[228]

Varshney D, Petit AP, Bueren-Calabuig JA et al. Molecular basis of RNA guanine-7 methyltransferase (RNMT) activation by RAM. Nucleic Acids Res 2016;44:10423-36. https://doi.org/10.1093/nar/gkw637.

[229]

Gonatopoulos-Pournatzis T, Dunn S, Bounds R et al. RAM/Fam103a1 is required for mRNA cap methylation. Mol Cell 2011;44:585-96. https://doi.org/10.1016/j.molcel.2011.08.041.

[230]

Chu C, Shatkin AJ. Apoptosis and autophagy induction in mammalian cells by small interfering RNA knockdown of mRNA capping enzymes. Mol Cell Biol 2008;28:5829-36. https://doi.org/10.1128/mcb.00021-08.

[231]

Haag S, Kretschmer J, Bohnsack MT. WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA 2015;21:180-7. https://doi.org/10.1261/rna.047910.114.

[232]

LétoquartJ, Huvelle E, Wacheul Let al. Structural and functional studies of Bud23-Trm112 reveal 18S rRNA N7-G1575 methylation occurs on late 40 S precursor ribosomes. Proc Natl Acad Sci USA 2014;111:E5518-26. https://doi.org/10.1073/pnas.1413089111.

[233]

Leetsi L, Õunap K, Abroi A et al. The common partner of several methyltransferases TRMT 112 regulates the expression of N6AMT1 isoforms in mammalian cells. Biomolecules 2019;9:422. https://doi.org/10.3390/biom9090422.

[234]

Hayek H, Eriani G, Allmang C. eIF 3 Interacts with selenoprotein mRNAs. Biomolecules 2022;12:1268. https://doi.org/10.3390/biom12091268.

[235]

Mars JC, Ghram M, Culjkovic-Kraljacic B et al. The cap-binding complex CBC and the eukaryotic translation factor eIF4E: coconspirators in cap-dependent RNA maturation and translation. Cancers (Basel) 2021;13:6185. https://doi.org/10.3390/cancers13246185.

[236]

Osborne MJ, Volpon L, Memarpoor-Yazdi M et al. Identification and characterization of the interaction between the Methyl-7Guanosine cap maturation enzyme RNMT and the cap-binding protein eIF4E. J Mol Biol 2022;434:167451. https://doi.org/10.1016/j.jmb.2022.167451.

[237]

Zhou W, Yi Y, Cao W et al. Functions of METTL1/WDR4 and QKI as m7G modification-related enzymes in digestive diseases. Front Pharmacol 2024;15:1491763. https://doi.org/10.3389/fphar.2024.1491763.

[238]

Zhao Z, Qing Y, Dong L et al. QKI shuttles internal m(7)Gmodified transcripts into stress granules and modulates mRNA metabolism. Cell 2023;186:3208-26. https://doi.org/10.1016/j.ce11.2023.05.047.

[239]

Saccomanno L, Loushin C, Jan E et al. The STAR protein QKI-6 is a translational repressor. Proc Natl Acad Sci USA 1999;96:1260510. https://doi.org/10.1073/pnas.96.22.12605.

[240]

Galarneau A, Richard S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 2005;12:691-8. https://doi.org/10.1038/nsmb963.

[241]

Chen J, Li K, Chen JW et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun 2022;42:223-44. https://doi.org/10.1002/cac2.12273.

[242]

Ma JY, Han H, Huang Y et al. METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Mol Ther 2021;29:342235. https://doi.org/10.1016/j.ymthe.2021.08.005.

[243]

Han H, Yang C, Ma J et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun 2022;13:1478. https://doi.org/10.1038/s41467-022-29125-7.

[244]

Huang Y, Ma J, Yang C et al. METTL 1 promotes neuroblastoma development through m(7)G tRNA modification and selective oncogenic gene translation. Biomark Res 2022;10:68. https://doi.org/10.1186/s40364-022-00414-z.

[245]

Li L, Yang Y, Wang Z et al. Prognostic role of METTL 1 in glioma. Cancer Cell Int 2021;21:633. https://doi.org/10.1186/s12935-021-02346-4.

[246]

Chen B, Jiang W, Huang Y et al. N(7)-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene 2022;41:2239-53. https://doi.org/10.1038/s41388-022-02250-9.

[247]

Pandolfini L, Barbieri I, Bannister AJ et al. METTL 1 Promotes let-7 MicroRNA processing via m7G methylation. Mol Cell 2019;74:1278-90. https://doi.org/10.1016/j.molcel.2019.03.040.

[248]

Khan AA, Huang H, Zhao Y et al. WBSCR22 and TRMT 112 synergistically suppress cell proliferation, invasion and tumorigenesis in pancreatic cancer via transcriptional regulation of ISG15. Int J Oncol 2022;60:24. https://doi.org/10.3892/ijo.2022.5314.

[249]

Wei C, Gershowitz A, Moss B. N6, O2’-dimethyladenosine a novel methylated ribonucleoside next to the 5' terminal of animal cell and virus mRNAs. Nature 1975;257:251-3. https://doi.org/10.1038/257251a0.

[250]

Bélanger F, Stepinski J, Darzynkiewicz E et al. Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase. J Biol Chem 2010;285:33037-44. https://doi.org/10.1074/jbc.M110.155283.

[251]

Sun H, Zhang M, Li K et al. Cap-specific terminal N(6)methylation by a mammalian m(6)Am methyltransferase. Cell Res 2019;29:80-2. https://doi.org/10.1038/s41422-018-0117-4.

[252]

Sendinc E, Valle-Garcia D, Dhall A et al. PCIF 1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 2019;75:620-30. https://doi.org/10.1016/j.molcel.2019.05.0 30.

[253]

Akichika S, Hirano S, Shichino Y et al. Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 2019;363:eaav0080. https://doi.org/10.1126/science.aav0080.

[254]

Boulias K, Toczydlowska-Socha D, Hawley BR et al. Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome. Mol Cell 2019;75:631-43. https://doi.org/10.1016/j.molcel.2019.06.006.

[255]

Wu Y, Pu X, Wu S et al. PCIF1, the only methyltransferase of N6,2-O-dimethyladenosine. Cancer Cell Int 2023;23:226. https://doi.org/10.1186/s12935-023-03066-7.

[256]

Pandey RR, Delfino E, Homolka D et al. The mammalian capspecific m(6)Am RNA methyltransferase PCIF1 regulates transcript levels in mouse tissues. Cell Rep 2020;32:108038. https://doi.org/10.1016/j.celrep.2020.108038.

[257]

Goh YT,Koh CWQ Sim DY et al. METTL 4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res 2020;48:9250-61. https://doi.org/10.1093/nar/gkaa684.

[258]

Mauer J, Luo X, Blanjoie A et al. Reversible methylation of m(6)A(m) in the 5 ' cap controls mRNA stability. Nature 2017;541:371-5. https://doi.org/10.1038/nature21022.

[259]

An H, Hong Y, Goh YT et al. m(6)Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation. Mol Cell Nov 7 2024;84:4142-57.e14. https://doi.org/10.1016/j.molcel.2024.10.004.

[260]

Akichika S, Suzuki T. Cap-specific m(6)Am modification: A transcriptional anti-terminator by sequestering PCF11 with implications for neuroblastoma therapy. Mol Cell 2024;84:4051-2. https://doi.org/10.1016/j.molcel.2024.10.014.

[261]

Wang L, Wang S, Wu L et al. PCIF1-mediated deposition of 5'-cap N(6),2' -O-dimethyladenosine in ACE2 and TMPRSS2 mRNA regulates susceptibility to SARS-CoV-2 infection. Proc Natl Acad Sci USA 2023;120:e2210361120. https://doi.org/10.1073/pnas.22103 61120.

[262]

Verhamme R, Jansens RJJ, Liu J et al. The pseudorabies virus UL 13 protein kinase triggers phosphorylation of the RNA demethylase FTO, which is associated with FTO-dependent suppression of interferon-stimulated gene expression. J Virol 2025;99:e0201924. https://doi.org/10.1128/jvi.02019-24.

[263]

Zhuo W, Sun M, Wang K et al. m(6)Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov 2022;8:48. https://doi.org/10.1038/s41421-022-00395-1.

[264]

Wang L, Wu L, Zhu Z et al. Role of PCIF1-mediated 5'-cap N6methyladeonsine mRNA methylation in colorectal cancer and anti-PD-1 immunotherapy. EMBO J 2023;42:e111673. https://doi.org/10.15252/embj.2022111673.

[265]

Gao S, Zhou J, Hu Z et al. Effects of the m6Am methyltransferase PCIF 1 on cell proliferation and survival in gliomas. Biochim Biophys Acta Mol Basis Dis 2022;1868:166498. https://doi.org/10.1016/j.bbadis.2022.166498.

[266]

Su R, Dong L, Li Y et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 2020;38:7996. https://doi.org/10.1016/j.ccell.2020.04.017.

[267]

Davis FF, Allen FW. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 1957;227:907-15.

[268]

Zhao BS, He C. Pseudouridine in a new era of RNA modifications. Cell Res 2015;25:153-4. https://doi.org/10.1038/cr.2014.143.

[269]

Cohn WE. 5-Ribosyl uracil, a carbon-carbon ribofuranosyl nucleoside in ribonucleic acids. Biochim Biophys Acta 1959;32:56971. https://doi.org/10.1016/0006-3002(59)90644-4.

[270]

Henras A, Dez C, Noaillac-Depeyre J et al. Accumulation of H/ACA snoRNPs depends on the integrity of the conserved central domain of the RNA-binding protein Nhp2p. Nucleic Acids Res 2001;29:2733-46. https://doi.org/10.1093/nar/29.13.2733.

[271]

De Zoysa MD, Yu YT. Posttranscriptional RNA pseudouridylation. Enzymes 2017;41:151-67. https://doi.org/10.1016/bs.enz.2017.02.001.

[272]

Song J, Zhuang Y, Zhu C et al. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 2020;16:160-9. https://doi.org/10.1038/s41589-019-0420-5.

[273]

Purchal MK, Eyler DE, Tardu M et al. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci USA 2022;119:e2109708119. https://doi.org/10.1073/pnas.2109708119.

[274]

Xue C, Chu Q, Zheng Q et al. Role of main RNA modifications in cancer: N(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022;7:142. https://doi.org/10.1038/s41392-022-01003-0.

[275]

Hur S, Stroud RM, Finer-Moore J. Substrate recognition by RNA 5-methyluridine methyltransferases and pseudouridine synthases: a structural perspective. J Biol Chem 2006;281:38969-73. https://doi.org/10.1074/jbc.R600034200.

[276]

Behm-Ansmant I, Branlant C, Motorin Y. The saccharomyces cerevisiae Pus2 protein encoded by YGL063w ORF is a mitochondrial tRNA:Psi27/28-synthase. RNA 2007;13:1641-7. https://doi.org/10.1261/rna.605607.

[277]

Shaheen R, Han L, Faqeih E et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet 2016;135:707-13. https://doi.org/10.1007/s00439-016-1665-7.

[278]

Guegueniat J, Halabelian L, Zeng H et al. The human pseudouridine synthase PUS 7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res 2021;49:1181022. https://doi.org/10.1093/nar/gkab934.

[279]

Guzzi N, Cieśla M, Ngoc PCT et al. Pseudouridylation of tRNAderived fragments steers translational control in stem cells. Cell 2018;173:1204-16. https://doi.org/10.1016/j.cell.2018.03.008.

[280]

Zaganelli S, Rebelo-Guiomar P, Maundrell K et al. The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules. J Biol Chem 2017;292:4519-32. https://doi.org/10.1074/jbc.M116.771105.

[281]

Penzo M, Rocchi L, Brugiere S et al. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEBJ 2015;29:3472-82. https://doi.org/10.1096/fj.15-270991.

[282]

Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA 2021;27:1441-58. https://doi.org/10.1261/rna.078953.121.

[283]

Torchet C, Badis G, Devaux F et al. The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. RNA 2005;11:928-38. https://doi.org/10.1261/rna. 2100905.

[284]

Liu K, Zhang S, Liu Y et al. Advancements in pseudouridine modifying enzyme and cancer. Front Cell Dev Biol 2024;12:1465546. https://doi.org/10.3389/fcell.2024.1465546.

[285]

Karijolich J, Yi C, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 2015;16:581-5. https://doi.org/10.1038/nrm4040.

[286]

Ishida K, Kunibayashi T, Tomikawa C et al. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extremethermophilic eubacterium Thermus thermophilus. Nucleic Acids Res 2011;39:2304-18. https://doi.org/10.1093/nar/gkq1180.

[287]

Penzo M, Montanaro L. Turning uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules 2018;8:38. https://doi.org/10.3390/biom8020038.

[288]

Eyler DE, Franco MK, Batool Z et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc Natl Acad Sci USA 2019;116:23068-74. https://doi.org/10.1073/pnas.1821754 116.

[289]

Levi O, Arava YS. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res 2021;49:432-43. https://doi.org/10.1093/nar/gkaa1178.

[290]

Fernandez IS, Ng CL, Kelley AC et al. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 2013;500:107-10. https://doi.org/10.1038/nature12302.

[291]

Anderson BR, Muramatsu H, Nallagatla SR et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 2010;38:5884-92. https://doi.org/10.1093/nar/gkq347.

[292]

Borchardt EK, Martinez NM, Gilbert WV. Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet 2020;54:309-36. https://doi.org/10.1146/annurev-genet-112618-043830.

[293]

Parisien M, Yi C, Pan T. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA 2012;18:355-67. https://doi.org/10.1261/rna.031351.111.

[294]

Han L, Kon Y, Phizicky EM. Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA 2015;21:188-201. https://doi.org/10.1261/rna.048173.114.

[295]

Chmielowska-Bąk J, Arasimowicz-Jelonek M, Deckert J. In search of the mRNA modification landscape in plants. BMC Plant Biol 2019;19:421. https://doi.org/10.1186/s12870-019-2033-2.

[296]

Wu G, Adachi H, Ge J et al. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J 2016;35:654-67. https://doi.org/10.15252/embj.201593113.

[297]

Cui Q, Yin K, Zhang X et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat Cancer 2021;2:932-49. https://doi.org/10.1038/s43018-021-00238-0.

[298]

Miao FA, Chu K, Chen HR et al. Increased DKC1 expression in glioma and its significance in tumor cell proliferation, migration and invasion. Invest New Drugs 2019;37:1177-86. https://doi.org/10.1007/s10637-019-00748-w.

[299]

Li H, Chen L, Han Y et al. The identification of RNA modification gene PUS 7 as a potential biomarker of ovarian cancer. Biology (Basel) 2021;10:1130. https://doi.org/10.3390/biology10111130.

[300]

Zhang Q, Fei S, Zhao Y et al. PUS 7 promotes the proliferation of colorectal cancer cells by directly stabilizing SIRT1 to activate the wnt/β-catenin pathway. Mol Carcinog 2023;62:160-73. https://doi.org/10.1002/mc.23473.

[301]

Du J, Gong A, Zhao X et al. Pseudouridylate synthase 7 promotes cell proliferation and invasion in colon cancer through activating PI3K/AKT/mTOR signaling pathway. Dig Dis Sci 2022;67:1260-70. https://doi.org/10.1007/s10620-021-06936-0.

[302]

Ding J, Bansal M, Cao Y et al. MYC drives mRNA pseudouridylation to mitigate proliferation-induced cellular stress during cancer development. Cancer Res 2024;84:4031-48. https://doi.org/10.1158/0008-5472.Can-24-1102.

[303]

Lan C, Huang X, Liao X et al. PUS 1 may be a potential prognostic biomarker and therapeutic target for hepatocellular carcinoma. Pharmgenomics Pers Med 2023;16:337-55. https://doi.org/10.2147/pgpm.S405621.

[304]

Hou P, Shi P, Jiang T et al. DKC 1 enhances angiogenesis by promoting HIF- 1α transcription and facilitates metastasis in col-orectal cancer. Br J Cancer 2020;122:668-79. https://doi.org/10.1038/s41416-019-0695-z.

[305]

Liu SY, Zhao ZY, Qiao Z et al. LncRNA PCAT 1 interacts with DKC1 to regulate proliferation, invasion and apoptosis in NSCLC cells via the VEGF/AKT/Bcl2/Caspase9 pathway. Cell Transplant 2021;30:963689720986071. https://doi.org/10.1177/0963689720986071.

[306]

Ji P, Ding D, Qin N et al. Systematic analyses of genetic variants in chromatin interaction regions identified four novel lung cancer susceptibility loci. J Cancer 2020;11:1075-81. https://doi.org/10.7150/jca.35127.

[307]

Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer 2017;17:5-19. https://doi.org/10.1038/nrc.2016.112.

[308]

Bykhovskaya Y, Casas K, Mengesha E et al. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 2004;74:1303-8. https://doi.org/10.1086/421530.

[309]

Wang B, Shi D, Yang S et al. Mitochondrial tRNA pseudouridylation governs erythropoiesis. Blood 2024;144:657-71. https://doi.org/10.1182/blood. 2023022004.

[310]

Shi D, Wang B, Li H et al. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience 2024;27:109265. https://doi.org/10.1016/j.isci.2024.109265.

[311]

Yadav N, Kumar S, Marlowe T et al. Oxidative phosphorylationdependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 2015;6:e1969. https://doi.org/10.1038/cddis.2015.305..

[312]

Payne EM, Virgilio M, Narla A et al. L-Leucine improves the anemia and developmental defects associated with DiamondBlackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood 2012;120:2214-24. https://doi.org/10.1182/blood-2011-10-382986.

[313]

Bagger FO, Sasivarevic D, Sohi SH et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res 2016;44:D917-24. https://doi.org/10.1093/nar/gkv1101.

[314]

Salvatore F, Russo T, Colonna A et al. Pseudouridine determination in blood serum as tumor marker. Cancer Detect Prev 1983;6:531-6.

[315]

Cerneckis J,Cui Q He C et al. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol Sci 2022;43:522-35. https://doi.org/10.1016/j.tips.2022.03.008.

[316]

Seidel A, Brunner S, Seidel P et al. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer 2006;94:1726-33. https://doi.org/10.1038/sj.bjc.6603164.

[317]

Ruggero D, Grisendi S, Piazza F et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003;299:259-62. https://doi.org/10.1126/science.1079447.

[318]

Ding H, Liu N, Wang Y et al. Implications of RNA pseudouridylation for cancer biology and therapeutics: a narrative review. J Transl Med 2024;22:906. https://doi.org/10.1186/s12967-024-05687-6.

[319]

Morais P, Adachi H, Yu YT. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol 2021;9:789427. https://doi.org/10.3389/fcell.2021.789427.

[320]

Pardi N, Hogan MJ, Pelc RS et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017;543:248-51. https://doi.org/10.1038/nature21428.

[321]

Sittplangkoon C, Alameh MG, Weissman D et al. mRNA vaccine with unmodified uridine induces robust type I interferondependent anti-tumor immunity in a melanoma model. Front Immunol 2022;13:983000. https://doi.org/10.3389/fimmu.2022.983000.

[322]

Rubio-Casillas A, Cowley D, Raszek M et al. Review: N1-methylpseudouridine (m1Ψ): friend or foe of cancer? Int J Biol Macromol 2024;267:131427. https://doi.org/10.1016/j.ijbiomac.2024.131427.

[323]

Maiello D, Varone M, Vicidomini R et al. Dyskerin downregulation can induce ER stress and promote autophagy via AKTmTOR signaling deregulation. Biomedicines 2022;10:1092. https://doi.org/10.3390/biomedicines10051092.

[324]

Gu Z, Zou L, Pan X et al. The role and mechanism of NAT10mediated ac4C modification in tumor development and progression. MedComm 2024;5:e70026. https://doi.org/10.1002/mco2.70026.

[325]

Sas-Chen A, Thomas JM, Matzov D et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 2020;583:638-43. https://doi.org/10.1038/s41586-020-24182.

[326]

Sharma S, Langhendries JL, Watzinger P et al. Yeast Kre33 and human NAT10 are conserved 18 S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 2015;43:2242-58. https://doi.org/10.1093/nar/gkv075.

[327]

Arango D, Sturgill D, Alhusaini N et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 2018;175:1872-86. https://doi.org/10.1016/j.cell.2018.10.030.

[328]

Zhang Y, Lei Y, Dong Y et al. Emerging roles of RNA ac4C modification and NAT 10 in mammalian development and human diseases. Pharmacol Ther 2024;253:108576. https://doi.org/10.1016/j.pharmthera.2023.108576.

[329]

Arango D, Sturgill D, Yang R et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4acetylcytidine. Mol Cell 2022;82:2797-814. https://doi.org/10.1016/j.molcel.2022.05.016.

[330]

Zhang Y, Jing Y, Wang Y et al. NAT 10 promotes gastric cancer metastasis via N4-acetylated COL5A1. Signal Transduct Target Ther 2021;6:173. https://doi.org/10.1038/s41392-021-00489-4.

[331]

Liu Y, Wang X, Liu Y et al. N4-acetylcytidine-dependent GLMP mRNA stabilization by NAT 10 promotes head and neck squamous cell carcinoma metastasis and remodels tumor microenvironment through MAPK/ERK signaling pathway. Cell Death Dis 2023;14:712. https://doi.org/10.1038/s41419-023-06245-6.

[332]

Yang Q, Lei X, He J et al. N4-acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1α positive feedback loop. Adu Sci (Weinh) 2023;10:e2300898. https://doi.org/10.1002/advs.202300898.

[333]

Mei Z, Shen Z, Pu J et al. NAT 10 mediated ac4C acetylation driven m(6)A modification via involvement of YTHDC1-LDHA/PFKM regulates glycolysis and promotes osteosarcoma. Cell Commun Signal 2024;22:51. https://doi.org/10.1186/s12964-023-01321-y.

[334]

Dalhat MH, Mohammed MRS, Alkhatabi HA et al. NAT10: An RNA cytidine transferase regulates fatty acid metabolism in cancer cells. Clin Transl Med 2022;12:e1045. https://doi.org/10.1002/ctm2.1045.

[335]

Li G, Ma X, Sui S et al. NAT10/ac4C/JunB facilitates TNBC malignant progression and immunosuppression by driving glycolysis addiction. J Exp Clin Cancer Res 2024;43:278. https://doi.org/10.1186/s13046-024-03200-x.

[336]

Zheng X, Wang Q, Zhou Y et al. N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun (Lond) 2022;42:1347-66. https://doi.org/10.1002/cac2.12363.

[337]

Wang G, Zhang M, Zhang Y et al. NAT10-mediated mRNA N4acetylcytidine modification promotes bladder cancer progression. Clin Transl Med 2022;12:e738. https://doi.org/10.1002/ctm2.738.

[338]

Shuai Y, Zhang H, Liu C et al. CLIC3 interacts with NAT10 to inhibit N4-acetylcytidine modification of p21 mRNA and promote bladder cancer progression. Cell Death Dis 2024;15:9. https://doi.org/10.1038/s41419-023-06373-z.

[339]

Abbas T, Dutta A. p 21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009;9:400-14. https://doi.org/10.1038/nrc2657.

[340]

Deng M, Zhang L, Zheng W et al. Helicobacter pylori-induced NAT 10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. J Exp Clin Cancer Res 2023;42:9. https://doi.org/10.1186/s13046-022-02586-w.

[341]

Yu C, Chen Y, Luo H et al. NAT 10 promotes vascular remodelling via mRNA ac4C acetylation. Eur Heart J 2025;46:288-304. https://doi.org/10.1093/eurheartj/ehae707.

[342]

Shi J, Yang C, Zhang J et al. NAT 10 is involved in cardiac remodeling through ac4C-mediated transcriptomic regulation. Circ Res 2023;133:989-1002. https://doi.org/10.1161/circresaha.122.322244.

[343]

Xu T, Du T, Zhuang X et al. Loss of NAT10 reduces the translation of Kmt5a mRNA through ac4C modification in cardiomyocytes and induces heart failure. J Am Heart Assoc 2024;13:e035714. https://doi.org/10.1161/jaha.124.035714.

[344]

Yang R, Yu W, Lin L et al. NAT 10 promotes osteoclastogenesis in inflammatory bone loss by catalyzing Fos mRNA ac4C modification and upregulating MAPK signaling pathway. J Adv Res 2025;72:303-17. https://doi.org/10.1016/j.jare.2024.07.031.

[345]

Liu D, Kuang Y, Chen S et al. NAT 10 promotes synovial aggression by increasing the stability and translation of N4acetylated PTX3 mRNA in rheumatoid arthritis. Ann Rheum Dis 2024;83:1118-31. https://doi.org/10.1136/ard-2023-225343.

[346]

Guo G, Shi X, Wang H et al. Epitranscriptomic N4-acetylcytidine profiling in CD4(+) T cells of systemic lupus erythematosus. Front Cell Dev Biol 2020;8:842. https://doi.org/10.3389/fcell.2020.00842.

[347]

Ji HN, Zhou HQ, Qie JB et al. Dysregulated ac4C modification of mRNA in a mouse model of early-stage Alzheimer's disease. Cell Biosci 2025;15:45. https://doi.org/10.1186/s13578-025-01389-8.

[348]

Zhang A, Yang J, Wang M et al. Target inhibition of NAT10mediated ac4C modification prevents seizure behavior in mice. Neuropharmacology 2025;272:110415. https://doi.org/10.1016/j.neuropharm.2025.110415.

[349]

Huang T, Zhang Y, Niu Y et al. The cytidine N-acetyltransferase NAT10 promotes thalamus hemorrhage-induced central poststroke pain by stabilizing Fn14 expression in thalamic neurons. Mol Neurobiol 2025;62:3276-92. https://doi.org/10.1007/s12035-024-04454-4.

[350]

Wei W, Zhang S, Han H et al. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep 2023;42:112810. https://doi.org/10.1016/j.celrep.2023.112810.

[351]

Zhang Z, Zhang Y, Cai Y et al. NAT 10 regulates the LPSinduced inflammatory response via the NOX2-ROS-NF-κ b pathway in macrophages. Biochim Biophys Acta Mol Cell Res 2023;1870:119521. https://doi.org/10.1016/j.bbamcr.2023.119521.

[352]

Zhang M, Yang K, Wang QH et al. The cytidine N acetyltransferase NAT10 participates in peripheral nerve injury-induced neuropathic pain by stabilizing SYT9 expression in primary sensory neurons. J Neurosci 2023;43:3009-27. https://doi.org/10.1523/jneurosci.2321-22.2023.

[353]

Wagner RW, Smith JE, Cooperman BS et al. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci USA 1989;86:2647-51. https://doi.org/10.1073/pnas.86.8.2647.

[354]

Bass BL, Weintraub H. A developmentally regulated activity that unwinds RNA duplexes. Cell 1987;48:607-13. https://doi.org/10.1016/0092-8674(87)90239-x.

[355]

Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 2016;17:83-96. https://doi.org/10.1038/nrm.2015.4.

[356]

Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 2010;79:321-49. https://doi.org/10.1146/annurev-biochem-060208-105251.

[357]

Chen CX, Cho DS, Wang Q et al. A third member of the RNAspecific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 2000;6:755-67. https://doi.org/10.1017/s1355838200000170.

[358]

Lehmann KA, Bass BL. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 2000;39:12875-84. https://doi.org/10.1021/bi001383g.

[359]

Gatsiou A, Vlachogiannis N, Lunella FF et al. Adenosine-toinosine rna editing in health and disease. Antioxid Redox Signaling 2017;29:846-63. https://doi.org/10.1089/ars.2017.7295.

[360]

Koganti P, Kadali VN,Manikoth Ayyathan D et al. The E3 ubiquitin ligase SMURF2 stabilizes RNA editase ADAR1p110 and promotes its adenosine-to-inosine (A-to-I) editing function. Cell Mol Life Sci 2022;79:237. https://doi.org/10.1007/s00018-022-04272-8.

[361]

Melcher T, Maas S, Herb A et al. A mammalian RNA editing enzyme. Nature 1996;379:460-4. https://doi.org/10.1038/379460a0.

[362]

Tan MH, Li Q, Shanmugam R et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 2017;550:249-54. https://doi.org/10.1038/nature24041.

[363]

Costa Cruz PH, Kato Y, Nakahama T et al. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing. RNA 2020;26:454-69. https://doi.org/10.1261/rna.072728.119.

[364]

Chalk AM, Taylor S, Heraud-Farlow JE et al. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol 2019;20:268. https://doi.org/10.1186/s13059-019-1873-2.

[365]

Rueter SM, Dawson TR, Emeson RB. Regulation of alternative splicing by RNA editing. Nature 1999;399:75-80. https://doi.org/10.1038/19992.

[366]

Li JB, Levanon EY, Yoon JK et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 2009;324:1210-3. https://doi.org/10.1126/science.1170995.

[367]

Mai TL, Chuang TJ. A-to-I RNA editing contributes to the persistence of predicted damaging mutations in populations. Genome Res 2019;29:1766-76. https://doi.org/10.1101/gr.246033.118.

[368]

Szabo B, Mandl TC, Woldrich B et al. RNA pol II-dependent transcription efficiency fine-tunes A-to-I editing levels. Genome Res 2024;34:231-42. https://doi.org/10.1101/gr.277686.123.

[369]

Quinones-Valdez G, Tran SS, Jun HI et al. Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol 2019;2:19. https://doi.org/10.1038/s42003-018-0271-8.

[370]

Han J, An O, Hong H et al. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. Sci Adu 2020;6:eaba5136. https://doi.org/10.1126/sciadv.aba5136.

[371]

Ishizuka JJ, Manguso RT, Cheruiyot CK et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2019;565:43-8. https://doi.org/10.1038/s41586-018-0768-9.

[372]

Qiu S, Li W, Xiong H et al. Single-cell RNA sequencing reveals dynamic changes in A-to-I RNA editome during early human embryogenesis. Bmc Genomics [Electronic Resource] 2016;17:766. https://doi.org/10.1186/s12864-016-3115-2.

[373]

Walkley CR, Kile BT. Cell death following the loss of ADAR1 mediated A-to-I RNA editing is not effected by the intrinsic apoptosis pathway. Cell Death Dis 2019;10:913. https://doi.org/10.1038/s41419-019-2160-6.

[374]

Cuddleston WH, Fan X, Sloofman L et al. Spatiotemporal and genetic regulation of A-to-I editing throughout human brain development. Cell Rep 2022;41:111585. https://doi.org/10.1016/j.celrep.2022.111585.

[375]

de Los Santos MR, Kopell BH, Grice AB et al. Divergent landscapes of A-to-I editing in postmortem and living human brain. Nature communications 2024;15:5366. https://doi.org/10.1038/s41467-024-49268-z.

[376]

Wu D, Zang YY, Shi YY et al. Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b. J Biol Chem 2020;295:18199-212. https://doi.org/10.1074/jbc.RA120.016049.

[377]

Walkley CR, Li JB. Rewriting the transcriptome: adenosine-toinosine RNA editing by ADARs. Genome Biol 2017;18:205. https://doi.org/10.1186/s13059-017-1347-3.

[378]

Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of alu-containing mRNAs in the human transcriptome. PLoS Biol 2004;2:e391. https://doi.org/10.1371/journal.pbio.0020391.

[379]

Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet 2002;3:370-9. https://doi.org/10.1038/nrg798.

[380]

Stellos K, Gatsiou A, Stamatelopoulos K et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med 2016;22:1140-50. https://doi.org/10.1038/nm.4172.

[381]

Wu J,You Q Lyu R et al. Folate metabolism negatively regulates OAS-mediated antiviral innate immunity via ADAR3/endogenous dsRNA pathway. Metabolism 2023;143:155526. https://doi.org/10.1016/j.metabol.2023.155526.

[382]

Jain M, Mann TD, Stulić M et al. RNA editing of Filamin A premRNA regulates vascular contraction and diastolic blood pressure. EMBO J 2018;37:e94813. https://doi.org/10.15252/embj.201694813.

[383]

van der Kwast R, Parma L,van der Bent ML et al. Adenosine-toinosine editing of vasoactive microRNAs alters their targetome and function in ischemia. Mol Ther Nucleic Acids 2020;21:932-53. https://doi.org/10.1016/j.omtn.2020.07.020.

[384]

Wu S, Fan Z, Kim P et al. The integrative studies on the functional A-to-I RNA editing events in human cancers. Genomics Proteomics Bioinformatics 2023;21:619-31. https://doi.org/10.1016/j.gpb.2022.12.010.

[385]

Wang Z, Wu Y, Ding Z et al. A novel mechanism for A-to-I RNAedited CYP1A 1 in promoting cancer progression in NSCLC. Cell Mol Biol Lett 2025;30:40. https://doi.org/10.1186/s11658-025-00718-6.

[386]

Romano G, Le P, Nigita G et al. A-to-I edited miR-411-5p targets MET and promotes TKI response in NSCLC-resistant cells. Oncogene 2023;42:1597-606. https://doi.org/10.1038/s41388-023-02673-y.

[387]

Cui Z, Liu X, E T et al. Effect of SNORD113-3/ADAR2 on glycolipid metabolism in glioblastoma via A-to-I editing of PHKA2. Cell Mol Biol Lett 2025;30:5. https://doi.org/10.1186/s11658-024-00680-9.

[388]

Chen S, Zhuo A, Tang R et al. A-to-I edited SNHG 3 promotes non-small cell lung cancer metastasis by promoting fatty acid oxidation and resisting ferroptosis. Commun Biol 2025;8:1333. https://doi.org/10.1038/s42003-025-08776-4.

[389]

Wang SY, Zhang LJ, Chen GJ et al. COPA A-to-I RNA editing hijacks endoplasmic reticulum stress to promote metastasis in colorectal cancer. Cancer Lett 2023;553:215995. https://doi.org/10.1016/j.canlet.2022.215995.

[390]

Velazquez-Torres G, Shoshan E, Ivan C et al. A-to-I miR-378a3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun 2018;9:461. https://doi.org/10.1038/s41467-018-02851-7.

[391]

Shigeyasu K, Okugawa Y, Toden S et al. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight 2018;3:e99976. https://doi.org/10.1172/jci.insight. 99976.

[392]

Wei Y, Zhang H, Feng Q et al. A novel mechanism for A-to-I RNA-edited AZIN1 in promoting tumor angiogenesis in colorectal cancer. Cell Death Dis 2022;13:294. https://doi.org/10.1038/s41419-022-04734-8.

[393]

Chan TH, Lin CH, Qi L et al. A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut 2014;63:832-43. https://doi.org/10.1136/gutjnl-2012-304037.

[394]

Kim HS, Na MJ, Son KH et al. ADAR1-dependent miR-31443p editing simultaneously induces MSI2 expression and suppresses SLC38A4 expression in liver cancer. Exp Mol Med 2023;55:95-107. https://doi.org/10.1038/s12276-022-00916-8.

[395]

Gao C, Zhou G, Shi J et al. The A-to-I editing of KPC1 promotes intrahepatic cholangiocarcinoma by attenuating proteasomal processing of NF-κB1p105 to p50. J Exp Clin Cancer Res 2022;41:338. https://doi.org/10.1186/s13046-022-02549-1.

[396]

Li W, Wang T, Fu G et al. The allelic regulation of tumor suppressor ADARB 2 in papillary thyroid carcinoma. Endocr Relat Cancer 2023;30:e220189. https://doi.org/10.1530/erc-22-0189.

[397]

Ramírez-Moya J, Baker AR, Slack FJ et al. ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity. Oncogene 2020;39:3738-53. https://doi.org/10.1038/s41388-020-1248-x.

[398]

Zheng P, Shu L, Ren D et al. circHtra1/miR-3960/GRB 10 axis promotes neuronal loss and immune deficiency in traumatic brain injury. Oxid Med Cell Longev 2022;2022:3522492. https://doi.org/10.1155/2022/3522492.

[399]

Yang H, Xu S, Hong X et al. ADAR1 prevents ZBP1-dependent PANoptosis via A-to-I RNA editing in developmental sevoflurane neurotoxicity. Cell Biol Toxicol 2024;40:57. https://doi.org/10.1007/s10565-024-09905-1.

[400]

Wu S,Xue Q Yang M et al. Genetic control of RNA editing in neurodegenerative disease. Brief Bioinform 2023;24:bbad007. https://doi.org/10.1093/bib/bbad007.

[401]

Khermesh K, D'Erchia AM, Barak M et al. Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease. RNA 2016;22:290-302. https://doi.org/10.1261/rna.054627.115.

[402]

Li W, Wu H, Li J et al. Transcriptomic analysis reveals associations of blood-based A-to-I editing with Parkinson's disease. J Neurol 2024;271:976-85. https://doi.org/10.1007/s00415-023-12053-X.

[403]

Lu C, Ren S, Xie W et al. Characterizing relevant microRNA editing sites in Parkinson's disease. Cells 2022;12:75. https://doi.org/10.3390/cells12010075.

[404]

D'Sa K, Choi ML, Wagen AZ et al. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. Sci Adv 2025;11:eadp8504. https://doi.org/10.1126/sciadv.adp8504.

[405]

Belur NR, Bustos BI, Lubbe SJ et al. Nuclear aggregates of NONO/SFPQ and A-to-I-edited RNA in Parkinson's disease and dementia with lewy bodies. Neuron 2024;112:2558-80. https://doi.org/10.1016/j.neuron.2024.05.003.

[406]

Hideyama T, Yamashita T, Suzuki T et al. Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2. J Neurosci 2010;30:11917-25. https://doi.org/10.1523/jneurosci.2021-10.2010.

[407]

DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245-56. https://doi.org/10.1016/j.neuron.2011.09.011.

[408]

Moore S, Alsop E, Lorenzini I et al. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol 2019;138:49-65. https://doi.org/10.1007/s00401-019-01999-w.

[409]

Pestal K, Funk CC, Snyder JM et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 2015;43:933-44. https://doi.org/10.1016/j.immuni.2015.11.001.

[410]

de Reuver R, Verdonck S, Dierick E et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 2022;607:784-9. https://doi.org/10.1038/s41586-022-04974-w.

[411]

Guallar D, Fuentes-Iglesias A, Souto Y et al. ADAR1-dependent RNA editing promotes MET and iPSC reprogramming by alleviating ER stress. Cell Stem Cell 2020;27:300-14. https://doi.org/10.1016/j.stem.2020.04.016.

[412]

Terajima H, Lu M, Zhang L et al. N6-methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses. PLoS Biol 2021;19:e3001292. https://doi.org/10.1371/journal.pbio.3001292.

[413]

Vlachogiannis NI, Tual-Chalot S, Zormpas E et al. Adenosine-toinosine RNA editing contributes to type I interferon responses in systemic sclerosis. J Autoimmun 2021;125:102755. https://doi.org/10.1016/j.jaut.2021.102755.

[414]

Vlachogiannis NI, Gatsiou A, Silvestris DA et al. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmun 2020;106:102329. https://doi.org/10.1016/j.jaut.2019.102329.

[415]

Aune TM, Tossberg JT, Heinrich RM et al. Alu RNA structural features modulate immune cell activation and A-to-I editing of Alu RNAs is diminished in human inflammatory bowel disease. Front Immunol 2022;13:818023. https://doi.org/10.3389/fimmu.2022.818023.

[416]

Yang XZ, Sun TS, Jia PY et al. A-to-I RNA editing in Klebsiella pneumoniae regulates quorum sensing and affects cell growth and virulence. Adu Sci (Weinh) 2023;10:e2206056. https://doi.org/10.1002/advs. 202206056.

[417]

Pujantell M, Riveira-Muñoz E, Badia R et al. RNA editing by ADAR1 regulates innate and antiviral immune functions in pri-mary macrophages. Sci Rep 2017;7:13339. https://doi.org/10.1038/s41598-017-13580-0.

[418]

Pujantell M, Badia R, Galván-Femenía I et al. ADAR1 function affects HPV replication and is associated to recurrent human papillomavirus-induced dysplasia in HIV coinfected individuals. Sci Rep 2019;9:19848. https://doi.org/10.1038/s41598-019-56422-X.

[419]

Yanai M, Kojima S, Sakai M et al. ADAR2 is involved in self and nonself recognition of borna disease virus genomic RNA in the nucleus. J Virol 2020;94:e01513-19. https://doi.org/10.1128/jvi.01513-19.

[420]

Huang M, Mark A, Pham J et al. RNA editing regulates host immune response and T cell homeostasis in SARS-CoV-2 infection. PLoS One 2024;19:e0307450. https://doi.org/10.1371/journal.pone.0307450.

[421]

Mann TD, Kopel E, Eisenberg E et al. Increased A-to-I RNA editing in atherosclerosis and cardiomyopathies. PLoS Comput Biol 2023;19:e1010923. https://doi.org/10.1371/journal.pcbi.1010923.

[422]

Vlachogiannis NI, Sachse M, Georgiopoulos G et al. Adenosine-to-inosine alu RNA editing controls the stability of the proinflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J Mol Cell Cardiol 2021;160:111-20. https://doi.org/10.1016/j.yjmcc.2021.07.005.

[423]

Weldy CS, Li Q, Monteiro JP et al. Smooth muscle expression of RNA editing enzyme ADAR1 controls activation of the RNA sensor MDA5 in atherosclerosis. Nat Cardiovasc Res 2025;4:1241-57. https://doi.org/10.1038/s44161-025-00710-5.

[424]

Borik S, Simon AJ, Nevo-Caspi Y et al. Increased RNA editing in children with cyanotic congenital heart disease. Intensive Care Med 2011;37:1664-71. https://doi.org/10.1007/s00134-011-2296-z.

[425]

Kokot KE, Kneuer JM, John D et al. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 2022;117:32. https://doi.org/10.1007/s00395-022-00940-9.

[426]

Zhang J, Li Y, Zhang J et al. ADAR1 regulates vascular remodeling in hypoxic pulmonary hypertension through N1methyladenosine modification of circCDK17. Acta Pharm Sin B 2023;13:4840-55. https://doi.org/10.1016/j.apsb.2023.07.006.

[427]

Okugawa Y, Toiyama Y, Shigeyasu K et al. Enhanced AZIN1 RNA editing and overexpression of its regulatory enzyme ADAR1 are important prognostic biomarkers in gastric cancer. J Transl Med 2018;16:366. https://doi.org/10.1186/s12967-018-1740-z.

[428]

Ramírez-Moya J, Miliotis C, Baker AR et al. An ADAR1-dependent RNA editing event in the cyclin-dependent kinase CDK 13 promotes thyroid cancer hallmarks. Mol Cancer 2021;20:115. https://doi.org/10.1186/s12943-021-01401-y.

[429]

Baker AR, Miliotis C, Ramírez-Moya J et al. Transcriptome profiling of ADAR1 targets in triple-negative breast cancer cells reveals mechanisms for regulating growth and invasion. Mol Cancer Res 2022;20:960-71. https://doi.org/10.1158/1541-7786.Mcr-21-0604.

[430]

Rivera M, Zhang H, Pham J et al. Malignant A-to-I RNA editing by ADAR1 drives T cell acute lymphoblastic leukemia relapse via attenuating dsRNA sensing. Cell Rep 2024;43:113704. https://doi.org/10.1016/j.celrep.2024.113704.

[431]

Chen J, Zhang CH, Tao T et al. A-to-I RNA co-editing predicts clinical outcomes and is associated with immune cells infiltration in hepatocellular carcinoma. Commun Biol 2024;7:838. https://doi.org/10.1038/s42003-024-06520-y.

[432]

Jin YY, Liang YP, Pan JQ et al. RNA editing in response to COVID 19 vaccines: unveiling dynamic epigenetic regulation of host immunity. Front Immunol 2024;15:1413704. https://doi.org/10.3389/fimmu.2024.1413704.

[433]

Olson ME, Harris RS, Harki DA. APOBEC enzymes as targets for virus and cancer therapy. Cell Chem Biol 2018;25:36-49. https://doi.org/10.1016/j.chembiol.2017.10.007.

[434]

Sharma S, WangJ, Alqassim E et al. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in natural killer cells. Genome Biol 2019;20:37. https://doi.org/10.1186/s13059-019-1651-1.

[435]

Smith HC, Bennett RP, Kizilyer A et al. Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 2012;23:258-68. https://doi.org/10.1016/j.semcdb.2011.10.004.

[436]

Sharma S, Patnaik SK, Taggart RT et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun 2015;6:6881. https://doi.org/10.1038/ncomms7881.

[437]

Van Norden M, Falls Z, Mandloi S et al. The implications of APOBEC3-mediated C-to-U RNA editing for human disease. Commun Biol 2024;7:529. https://doi.org/10.1038/s42003-024-06239-w.

[438]

Wang S, Kim K, Gelvez N et al. Identification of RBM46 as a novel APOBEC1 cofactor for C-to-U RNA-editing activity. J Mol Biol 2023;435:168333. https://doi.org/10.1016/j.jmb.2023.168333.

[439]

Chester A, Somasekaram A, Tzimina M et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J 2003;22:3971-82. https://doi.org/10.1093/emboj/cdg369.

[440]

Snyder EM, McCarty C, Mehalow A et al. APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. RNA 2017;23:457-65. https://doi.org/10.1261/rna.058818.116.

[441]

Anant S, Henderson JO, Mukhopadhyay D et al. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP 2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J Biol Chem 2001;276:47338-51. https://doi.org/10.1074/jbc.M104911200.

[442]

Negi V, Paul D, Das S et al. Altered expression and editing of miRNA-100 regulates iTreg differentiation. Nucleic Acids Res 2015;43:8057-65. https://doi.org/10.1093/nar/gkv752.

[443]

Sharma S, Patnaik SK, Kemer Z et al. Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes. RNA Biol 2017;14:603-10. https://doi.org/10.1080/15476286.2016.1184387.

[444]

Carouge D, Blanc V, Knoblaugh SE et al. Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci USA 2016;113:E5425-33. https://doi.org/10.1073/pnas.1604773113.

[445]

Law EK, Sieuwerts AM, LaPara K et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adu 2016;2:e1601737. https://doi.org/10.1126/sciadv.1601737.

[446]

Kankowski S, Förstera B, Winkelmann A et al. A novel RNA editing sensor tool and a specific agonist determine neuronal protein expression of RNA-edited glycine receptors and identify a genomic APOBEC1 dimorphism as a new genetic risk factor of epilepsy. Front Mol Neurosci 2017;10:439. https://doi.org/10.3389/fnmol.2017.00439.

[447]

Guo S, Yang J, Jiang B et al. MicroRNA editing patterns in Huntington's disease. Sci Rep 2022;12:3173. https://doi.org/10.1038/s41598-022-06970-6.

[448]

Roth SH, Danan-Gotthold M, Ben-Izhak M et al. Increased RNA editing may provide a source for autoantigens in systemic lupus erythematosus. Cell Rep 2018;23:50-7. https://doi.org/10.1016/j.celrep.2018.03.036.

[449]

Liu X, Liu X, Zhou J et al. Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene. RNA 2022;28:917-26. https://doi.org/10.1261/rna.079160.122.

[450]

Hernandez MM, Fahrny A, Jayaprakash A et al. Impact of suboptimal APOBEC3G neutralization on the emergence of HIV drug resistance in humanized mice. J Virol 2020;94:e01543-19. https://doi.org/10.1128/jvi.01543-19.

[451]

Guo M, Li F, Zhao L et al. Pan-cancer investigation of C-to-U editing reveals its important role in cancer development and new targets for cancer treatment. Front Oncol 2023;13:1097667. https://doi.org/10.3389/fonc.2023.1097667.

[452]

Zhang N, Tang W, Torres L et al. Cell surface RNAs control neutrophil recruitment. Cell 2024;187:846-60. https://doi.org/10.1016/j.cell.2023.12.033.

[453]

Xie Y, Chai P, Till NA et al. The modified RNA base acp(3)U is an attachment site for N-glycans in glycoRNA. Cell 2024;187:522837. https://doi.org/10.1016/j.cell.2024.07.044.

[454]

Graziano VR, Porat J,Ah Kioon MD et al. RNA N-glycosylation enables immune evasion and homeostatic efferocytosis. Nature 2025;645:784-92. https://doi.org/10.1038/s41586-025-09310-6.

[455]

Sharma S, Jiao X, Yang J et al. Extracellular exosomal RNAs are glyco-modified. Nat Cell Biol 2025;27:983-91. https://doi.org/10.1038/s41556-025-01682-1.

[456]

Ma Y, Guo W, Mou Q et al. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol 2024;42:608-16. https://doi.org/10.1038/s41587-023-01801-z.

[457]

He J, Jiang H, Wang Y et al. The role of cell surface RNAs in hepatocellular carcinoma. Int J Biol Macromol 2025;330:147948. https://doi.org/10.1016/j.ijbiomac.2025.147948.

[458]

George BM, Eleftheriou M, Yankova E et al. Treatment of acute myeloid leukemia models by targeting a cell surface RNAbinding protein. Nat Biotechnol 2025; https://doi.org/10.1038/s41587-025-02648-2

[459]

Ren T, Zhang Y, Tong Y et al. FRET imaging of glycoRNA on small extracellular vesicles enabling sensitive cancer diagnostics. Nat Commun 2025;16:3391. https://doi.org/10.1038/s41467-025-58490-2.

[460]

Zhang Z, Ling T, Ding Q et al. GlycoRNA-rich, neutrophil membrane-coated, siMT1-loaded nanoparticles mitigate abdominal aortic aneurysm progression by inhibiting the formation of neutrophil extracellular traps. Mater Today Bio 2025;31: 101630. https://doi.org/10.1016/j.mtbio.2025.101630.

[461]

Acera Mateos P, A JS, Ravindran A et al. Prediction of m6A and m5C at single-molecule resolution reveals a transcriptomewide co-occurrence of RNA modifications. Nat Commun 2024;15:3899. https://doi.org/10.1038/s41467-024-47953-7.

[462]

Zhu L, Li B, Li R et al. METTL 3 suppresses pancreatic ductal adenocarcinoma progression through activating endogenous dsRNA-induced anti-tumor immunity. Cell Oncol (Dordr) 2023;46:1529-41. https://doi.org/10.1007/s13402-023-00829-2.

[463]

Yang N, Wang T, Li Q et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. J Cell Physiol 2021;236:3863-80. https://doi.org/10.1002/jcp.30128.

[464]

Gupta A, Bansal M, Ding J et al. DKC1-mediated pseudouridylation of rRNA targets hnRNP A 1 to sustain IRES-dependent translation and ATF4-driven metabolic adaptation. Sci Adv 2025;11:eadv9401. https://doi.org/10.1126/sciadv.adv9401.

[465]

Jin C, Wang T, Zhang D et al. Acetyltransferase NAT10 regulates the wnt/β-catenin signaling pathway to promote colorectal cancer progression via ac(4)C acetylation of KIF23 mRNA. J Exp Clin Cancer Res 2022;41:345. https://doi.org/10.1186/s13046-022-02551-7.

[466]

Levanon EY, Cohen-Fultheim R, Eisenberg E. In search of critical dsRNA targets of ADAR1. Trends Genet 2024;40:250-9. https://doi.org/10.1016/j.tig.2023.12.002.

[467]

Chen R, Ishak CA, De Carvalho DD. Endogenous retroelements and the viral mimicry response in cancer therapy and cellular homeostasis. Cancer Discov 2021;11:2707-25. https://doi.org/10.1158/2159-8290.Cd-21-0506.

[468]

Bao Y, Zhai J, Chen H et al. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut 2023;72:1497-509. https://doi.org/10.1136/gutjnl-2022-328845.

AI Summary AI Mindmap
PDF (4342KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/