Insights into the mechanisms of microRNAs in hepatoblastoma: from diagnosis to treatment

Meng Kong , Shisong Zhang , Xiang Ma

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) : pbaf034

PDF (1438KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) :pbaf034 DOI: 10.1093/pcmedi/pbaf034
Review
research-article

Insights into the mechanisms of microRNAs in hepatoblastoma: from diagnosis to treatment

Author information +
History +
PDF (1438KB)

Abstract

Hepatoblastoma (HB) is the most common malignant liver tumor in children. Early diagnosis and effective treatment are crucial for improving the prognosis of children with HB. In recent years, microRNAs (miRNAs), an important class of noncoding RNA molecules, have been increasingly recognized for their key regulatory roles in the occurrence, development, and treatment of HB. This review systematically reviews the expression characteristics, molecular mechanisms, and potential application value of miRNAs in the diagnosis and treatment of HB. Research indicates that the interaction network between miRNAs and long noncoding RNAs and circular RNAs has a significant effect on the development of HBs. miRNAs regulate signaling pathways, such as the Wnt/β-catenin, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and Janus kinase 2/signal transducer and activator of transcription 3 pathways, and also play critical roles in the biological behavior of HBs. Furthermore, the progress of preclinical research on miRNAs as biomarkers and therapeutic targets provides new ideas and directions for precision medicine in HB. Finally, this article looks forward to the future development directions of miRNAs in precision medicine for HBs, emphasizing their important potential in improving diagnostic accuracy and treatment efficacy.

Keywords

hepatoblastoma / microRNAs / molecular mechanisms / diagnosis / treatment / precision medicine

Cite this article

Download citation ▾
Meng Kong, Shisong Zhang, Xiang Ma. Insights into the mechanisms of microRNAs in hepatoblastoma: from diagnosis to treatment. Precision Clinical Medicine, 2025, 8(4): pbaf034 DOI:10.1093/pcmedi/pbaf034

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the Shandong Provincial Health and Technology Science Program General Project (grant No. 202406020138), Shandong Provincial Natural Science Foundation General Project (grant No. ZR2022MH229), and Science and Technology Development Program of Jinan Municipal Health Commission (grant No. 2023-1-53). Figures were created by the authors of Biorender, https://biorender.com.

Author contributions

Meng Kong (Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Software, Writing—original draft), Shisong Zhang (Writing—review & editing), and Xiang Ma (Conceptualization, Writing—review & editing).

Conflict of interest

None declared.

References

[1]

Kong M, Zhai Y, Liu H et al. Insights into the mechanisms of angiogenesis in hepatoblastoma. Front Cell Dev Biol 2025;13:1535339. https://doi.org/10.3389/fcell.2025.1535339.

[2]

Aghajanzadeh T, Tebbi K, Talkhabi M. Identification of potential key genes and miRNAs involved in hepatoblastoma pathogenesis and prognosis. J Cell Commun Signal 2021;15:131-42. https://doi.org/10.1007/s12079-020-00584-1.

[3]

Fan L, Na J, Shi T et al. Hepatoblastoma: from molecular mechanisms to therapeutic strategies. Curr Oncol 2025;32:149. https://doi.org/10.3390/curroncol32030149.

[4]

Fu Y, Francés R, Monge C et al. Metabolic and epigenetic mechanisms in hepatoblastoma: insights into tumor biology and therapeutic targets. Genes 2024;15:1358. https://doi.org/10.3390/genes15111358.

[5]

Awad AM, Dabous E, Alalem M et al. MicroRNA-141-regulated KLK10 and TNFSF-15 gene expression in hepatoblastoma cells as a novel mechanism in liver carcinogenesis. Sci Rep 2024;14:13492. https://doi.org/10.1038/s41598-024-63223-4.

[6]

Zhang J, Wu L, Ding R et al. Role of miRNA-122 in cancer. Int J Oncol 2024;65:83. https://doi.org/10.3892/ijo.2024.5671.

[7]

Rowe MM, Kaestner KH. The role of non-coding RNAs in liver disease, injury, and regeneration. Cells 2023;12:359. https://doi.org/10.3390/cells12030359.

[8]

Li P, Ma X, Huang D et al. Exploring the roles of non-coding RNAs in liver regeneration. Noncoding RNA Res 2024;9:945-53. https://doi.org/10.1016/j.ncrna.2024.04.003.

[9]

Bandopadhyay M, Sarkar N, Datta S et al. Hepatitis B virus X protein mediated suppression of miRNA-122 expression enhances hepatoblastoma cell proliferation through cyclin G1-p 53 axis. Infect Agent Cancer 2016;11:40. https://doi.org/10.1186/s13027-016-0085-6.

[10]

Cristóbal I, Sanz-Álvarez M, Luque M et al. The role of microRNAs in hepatoblastoma tumors. Cancers 2019;11:409. https://doi.org/10.3390/cancers11030409.

[11]

Liu L, Wang L, Li X et al. Effect of miR-21 on apoptosis in hepatoblastoma cell through activating ASPP2/p 38 signaling pathway in vitro and in vivo. Artif Cells Nanomed Biotechnol 2019;47:372936. https://doi.org/10.1080/21691401.2019.1664561.

[12]

Xue S, Lu F, Sun C et al. LncRNA ZEB1-AS 1 regulates hepatocellular carcinoma progression by targeting miR-23c. World J Surg Oncol 2021;19:121. https://doi.org/10.1186/s12957-021-02176-8.

[13]

Ghafouri-Fard S, Askari A,Behzad Moghadam K et al. A review on the role of ZEB1-AS1 in human disorders. Pathol Res Pract 2023;245:154486. https://doi.org/10.1016/j.prp.2023.154486.

[14]

Zhu F, Liu Z, Zhou Q et al. Identification of mRNA prognostic markers for TGCT by integration of co-expression and ceRNA network. Front Endocrinol 2021;12:743155. https://doi.org/10.338 9/fendo.2021.743155.

[15]

Wu Z, Chen S, Zuo T et al. miR-139-3p/Wnt5A axis inhibits metastasis in hepatoblastoma. Mol Biotechnol 2023;65:2030-7. https://doi.org/10.1007/s12033-023-00714-1.

[16]

Chen LJ, Yuan MX, Ji CY et al. Long non-coding RNA CRNDE regulates angiogenesis in hepatoblastoma by targeting the MiR203/VEGFA axis. Pathobiology 2020;87:161-70. https://doi.org/10.1159/000505131.

[17]

Duan Y, Wu H, Hao X et al. Knockdown of long non-coding MIR210HG inhibits cell proliferation, migration, and invasion in hepatoblastoma via the microRNA-608-FOXO6 axis. J Int Med Res 2021;49:3000605211054695. https://doi.org/10.1177/03000605211054695.

[18]

Feng SG, Bhandari R, Ya L et al. SNHG 9 promotes hepatoblastoma tumorigenesis via miR-23a-5p/Wnt3a axis. J Cancer 2021;12:6031-49. https://doi.org/10.7150/jca.60748.

[19]

Yuan MX, Ji CY, Gao HQ et al. Yin Q. lncRNA TUG1 regulates angiogenesis via the miR-204-5p/JAK2/STAT3 axis in hepatoblastoma. Mol Med Rep 2021;24:553. https://doi.org/10.3892/mmr.2021.12192.

[20]

Aguiar TFM, Rivas MP,de Andrade Silva EM et al. First transcriptome analysis of hepatoblastoma in brazil: unraveling the pivotal role of noncoding RNAs and metabolic pathways. Biochem Genet 2024;22:1974-2007. https://doi.org/10.1007/s10528-024-10764-y.

[21]

Wu B, Zhen K, Guo L et al. Diagnostic and prognostic value of miRNAs in hepatoblastoma: a systematic review with metaanalysis. Technol Cancer Res Treat 2022;21:15330338221087830. https://doi.org/10.1177/15330338221087830.

[22]

Cartier F, Indersie E, Lesjean S et al. New tumor suppressor microRNAs target glypican-3 in human liver cancer. Oncotarget 2017;8:41211-26. https://doi.org/10.18632/oncotarget.17162.

[23]

Ruan T, He X, Yu J et al. MicroRNA-186 targets yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncol Lett 2016;11:2941-5. https://doi.org/10.3892/ol.2016.4312.

[24]

Lv Y, Xie X, Zou G et al. miR-181b-5p/SOCS2/JAK2/STAT5 axis facilitates the metastasis of hepatoblastoma. Precis Clin Med 2023;6:pbad027. https://doi.org/10.1093/pcmedi/pbad027.

[25]

Pu C, Liu Z, Chen J et al. Mir 135a inhibits tumor cell proliferation by regulating the expression of notch pathway in hepatoblastoma. Cell Mol Biol 2022;67:125-31. https://doi.org/10.14715/cmb/2021.67.6.17.

[26]

Wang B, Jin WX, Zhang YL et al. Effects of miR-489 targeting on SOX4 gene on proliferation and apoptosis of human hepatocellular carcinoma cells. Afr Health Sci 2020;20:1292-8. https://doi.org/10.4314/ahs.v20i3.34.

[27]

Ghafouri-Fard S, Khoshbakht T, Hussen BM et al. Circ_CDR1as: a circular RNA with roles in the carcinogenesis. Pathol Res Pract 2022;236:153968. https://doi.org/10.1016/j.prp.2022.153968.

[28]

Shang Y, Zhu Z, Zhang Y et al. MiR-7-5p/KLF 4 signaling inhibits stemness and radioresistance in colorectal cancer. Cell Death Discov 2023;9:42. https://doi.org/10.1038/s41420-023-01339-8.

[29]

Chen L, Shi J, Wu Y et al. CircRNA CDR1 as promotes hepatoblastoma proliferation and stemness by acting as a miR-7-5p sponge to upregulate KLF4 expression. Aging 2020;12:1923353. https://doi.org/10.18632/aging.103748.

[30]

Hu Y, Zai H, Jiang W et al. miR-126 in extracellular vesicles derived from hepatoblastoma cells promotes the tumorigenesis of hepatoblastoma through inducing the differentiation of BMSCs into cancer stem cells. J Immunol Res 2021;2021:6744715. https://doi.org/10.1155/2021/6744715.

[31]

Zhu C, He X, Chen K et al. LncRNA NBR2 aggravates hepatoblastoma cell malignancy and promotes cell proliferation under glucose starvation through the miR-22/TCF7 axis. Cell Cycle 2021;20:575-90. https://doi.org/10.1080/15384101.2021.1885236.

[32]

Bhandari R, Shaikh II, Bhandari R et al. LINC01023 promotes the hepatoblastoma tumorigenesis via miR-378a-5p/WNT3 axis. Mol Cell Biochem 2023;478:1867-85. https://doi.org/10.1007/s11010-022-04636-5.

[33]

Zhang W, Liang F, Li Q et al. LncRNA MIR205HG accelerates cell proliferation, migration and invasion in hepatoblastoma through the activation of MAPK signaling pathway and PI3K/AKT signaling pathway. Biol Direct 2022;17:2. https://doi.org/10.1186/s13062-021-00309-3.

[34]

Zhang T, Ji C, Zhang Y et al. LncRNA SNHG1 accelerates cell proliferation, migration, and invasion of hepatoblastoma through mediating miR-6838-5p/PIM3/RhoA axis. Biochem Genet 2024;62:59-76. https://doi.org/10.1007/s10528-023-10404-x.

[35]

Liu T, Chen Z, Chen W et al. Dysregulated miRNAs modulate tumor microenvironment associated signaling networks in pancreatic ductal adenocarcinoma. Precis Clin Med 2023;6:pbad004. https://doi.org/10.1093/pcmedi/pbad004.

[36]

Liu Y, Song J, Liu Y et al. Transcription activation of circSTAT3 induced by Gli 2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. J Exp Clin Cancer Res 2020;39:101. https://doi.org/10.1186/s13046-020-01598-8.

[37]

Zhu Q, Hu Y, Jiang W et al. Circ-CCT2 activates wnt/β-catenin signaling to facilitate hepatoblastoma development by stabiliz-ing PTBP1 mRNA. Cell Mol Gastroenterol Hepatol 2024;17:175-97. https://doi.org/10.1016/j.jcmgh.2023.10.004.

[38]

Cui Z, He J, Zhu J et al. O-GlcNAcylated LARP 1 positively regulated by circCLNS1A facilitates hepatoblastoma progression through DKK4/β-catenin signaling. Clin Transl Med 2023;13:e1239. https://doi.org/10.1002/ctm2.1239.

[39]

Ruiz-Manriquez LM, Carrasco-Morales O, Sanchez ZEA et al. MicroRNA-mediated regulation of key signaling pathways in HCC: a mechanistic insight. Front Genet 2022;13:910733. https://doi.org/10.3389/fgene.2022.910733.

[40]

Wang HS, Lao J, Jiang RS et al. Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 2024;12:1309693. https://doi.org/10.3389/fped.2024.1309693.

[41]

Indersie E, Lesjean S, Hooks KB et al. MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting β-catenin and wnt signaling. Hepatol Commun 2017;1:168-83. https://doi.org/10.1002/hep4.1029.

[42]

Cui X, Wang Z, Li J et al. Cross talk between RNA N6methyladenosine methyltransferase-like 3 and miR-186 regulates hepatoblastoma progression through wnt/β-catenin signaling pathway. Cell Prolif 2020;53:e12768. https://doi.org/10.1111/cpr.12768.

[43]

Long J, Liu L, Yang X et al. LncRNA NUTM2A-AS1 aggravates the progression of hepatocellular carcinoma by activating the miR-186-5p/KLF7-mediated wnt/beta-catenin pathway. Hum Cell 2023;36:312-28. https://doi.org/10.1007/s13577-022-00802-5.

[44]

Wu Z, Chen S, Zuo T et al. miR-139-3p/Wnt5A axis inhibits metastasis in hepatoblastoma. Mol Biotechnol 2023;65:2030-7. https://doi.org/10.1007/s12033-023-00714-1.

[45]

Xin RQ, Li WB, Hu ZW et al. MiR-329-3p inhibits hepatocellular carcinoma cell proliferation and migration through USP22-wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 2020;24:9932-9. https://doi.org/10.26355/eurrev_202010_23204.

[46]

Xu H, Li B. MicroRNA-582-3p targeting ribonucleotide reductase regulatory subunit M2 inhibits the tumorigenesis of hepatocellular carcinoma by regulating the wnt/β-catenin signaling pathway. Bioengineered 2022;13:12876-87. https://doi.org/10.1080/21655979.2022.2078026.

[47]

Asl ER, Amini M, Najafi S et al. Interplay between MAPK/ERK signaling pathway and microRNAs: a crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci 2021;278:119499. https://doi.org/10.1016/j.lfs.2021.119499.

[48]

Liu G, Zhu Q, Wang H et al. Long non-coding RNA Linc00205 promotes hepatoblastoma progression through regulating microRNA-154-3p/rho-associated coiled-coil kinase 1 axis via mitogen-activated protein kinase signaling. Aging 2022;14:1782-96. https://doi.org/10.18632/aging.203902.

[49]

Chen WJ, Dai YJ, Gu WH et al. Exosomatic miR-1246 promotes hepatocellular carcinoma progression via FSTL5 and ERK/p 38 MAPK pathway. J Biochem Mol Toxicol 2025;39:e70148. https://doi.org/10.1002/jbt.70148.

[50]

Khezri MR, Hsueh HY, Mohammadipanah S et al. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024;57:e13608. https://doi.org/10.1111/cpr.13608.

[51]

Li Y, Kong M, Qiu T et al. Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway. Precis Clin Med 2024;7:pbae026. https://doi.org/10.1093/pcmedi/pbae026.

[52]

Pan L, Li J, Xu Q et al. HER2/PI3K/AKT pathway in HER2-positive breast cancer: a review. Medicine (Baltimore) 2024;103:e38508. https://doi.org/10.1097/MD.0000000000038508.

[53]

Ye M, He J, Zhang J et al. USP 7 promotes hepatoblastoma progression through activation of PI3K/AKT signaling pathway. Cancer Biomark 2021;31:107-17. https://doi.org/10.3233/CBM-200052.

[54]

Al-Hawary SIS, Ruzibakieva M, Gupta R et al. Detailed role of microRNA-mediated regulation of PI3K/AKT axis in human tumors. Cell Biochem Funct 2024;42:e3904. https://doi.org/10.100 2/cbf.3904.

[55]

Chen T, Chen J, Zhao X et al. β Klotho, a direct target of miR-206, contributes to the growth of hepatoblastoma through augmenting PI3K/AKT/mTOR signaling. Am J Cancer Res 2021;11:1982-2004.

[56]

Barros JS, Aguiar TFM, Costa SS et al. Copy number alterations in hepatoblastoma: literature review and a brazilian cohort analysis highlight new biological pathways. Front Oncol 2021;11:741526. https://doi.org/10.3389/fonc.2021.741526.

[57]

Cui X, Liu X, Han Q et al. DPEP 1 is a direct target of miR-193a-5p and promotes hepatoblastoma progression by PI3K/AKT/mTOR pathway. Cell Death Dis 2019;10:701. https://doi.org/10.1038/s41419-019-1943-0.

[58]

Xu F, Zhu F, Wang W et al. Down-regulation of miRNA-196b expression inhibits the proliferation, migration and invasiveness of HepG2 cells while promoting their apoptosis via the PI3K/AKT signaling pathway. Cell Mol Biol 2020;66:159-64. https://doi.org/10.14715/cmb/2020.66.3.25.

[59]

Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022;12:1023177. https://doi.org/10.3389/fonc.2022.1023177.

[60]

Lee SH, Kim KH, Lee SM et al. STAT3 blockade ameliorates LPSinduced kidney injury through macrophage-driven inflammation. Cell Commun Signal 2024;22:476. https://doi.org/10.1186/s12964-024-01841-1.

[61]

Lv J, Kong Y, Gao Z et al. LncRNA TUG1 interacting with miR144 contributes to proliferation, migration and tumorigenesis through activating the JAK2/STAT3 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2018;101:19-28. https://doi.org/10.1016/j.biocel.2018.05.010.

[62]

Wu L, Sun S, Qu F et al. CXCL 9 influences the tumor immune microenvironment by stimulating JAK/STAT pathway in triple-negative breast cancer. Cancer Immunol Immunother 2023;72:1479-92. https://doi.org/10.1007/s00262-022-03343-w.

[63]

Masuzaki R, Zhao S, Valerius MT et al. SOCS 2 balances metabolic and restorative requirements during liver regeneration. J Biol Chem 2016;291:3346-58. https://doi.org/10.1074/jbc.M115.703264.

[64]

Yang Y, Lei Y, Liang Y et al. Vitamin D protects glomerular mesangial cells from high glucose-induced injury by repressing JAK/STAT signaling. Int Urol Nephrol 2021;53:1247-54. https://doi.org/10.1007/s11255-020-02728-z.

[65]

Lv Y, Xie X, Zou G et al. SOCS 2 inhibits hepatoblastoma metastasis via downregulation of the JAK2/STAT5 signal pathway. Sci Rep 2023;13:21814. https://doi.org/10.1038/s41598-023-48591-7.

[66]

Zhang Y, Solinas A, Cairo S et al. Molecular mechanisms of hepatoblastoma. Semin Liver Dis 2021;41:28-41. https://doi.org/10.1055/s-0040-1722645.

[67]

Abdel-Rafei MK, Thabet NM, Rashed LA et al. Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: signal trans-duction between PI3K/AKT/GSK-3β/mTOR and wnt/β-catenin pathways; in vitro. J Cancer Res Ther 2021;17:1404-18. https://doi.org/10.4103/jcrt.JCRT_963_19.

[68]

Lin J, Song T, Li C et al. GSK-3 β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res 2020;1867:118659. https://doi.org/10.1016/j.bbamcr.2020.118659.

[69]

Jiang ZL, Zhang FX, Zhan HL et al. miR-181b-5p promotes the progression of cholangiocarcinoma by targeting PARK 2 via PTEN/PI3K/AKT Signaling Pathway. Biochem Genet 2022;60:22340. https://doi.org/10.1007/s10528-021-10084-5.

[70]

Yu F, Lu Z, Chen B et al. Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediat Inflamm 2016;2016:9856538. https://doi.org/10.1155/2016/9856538.

[71]

Wang L, Song LF, Chen XY et al. MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther 2019;25:112-22. https://doi.org/10.1111/cns.12991.

[72]

Dong R, Liu GB, Liu BH et al. Targeting long non-coding RNATUG1 inhibits tumor growth and angiogenesis in hepatoblastoma. Cell Death Dis 2016;7:e2278. https://doi.org/10.1038/cddis.2016.143.

[73]

von Frowein J, Hauck SM, Kappler R et al. MiR-492 regulates metastatic properties of hepatoblastoma via CD44. Liver Int 2018;38:1280-91. https://doi.org/10.1111/liv.13687.

[74]

Fu H, Zhang J, Pan T et al. miR-378a enhances the sensitivity of liver cancer to sorafenib by targeting VEGFR, PDGFR β and c-raf. Mol Med Rep 2018;17:4581-8. https://doi.org/10.3892/mmr.20188390.

[75]

de la Cruz-Ojeda P, Schmid T, Boix L et al. miR-200c-3p, miR-222-5p, and miR-512-3p constitute a biomarker signature of sorafenib effectiveness in advanced hepatocellular carcinoma. Cells 2022;11:2673. https://doi.org/10.3390/cells11172673.

[76]

Finch ML, Marquardt JU, Yeoh GC et al. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014;54:288-303. https://doi.org/10.1016/j.biocel.2014.04.002.

[77]

Ecevit ÇÖ, Aktaş S,Tosun Yildirim H et al. microrna-17, microrna-19b, microrna-146a, microrna-302d expressions in hepatoblastoma and clinical importance. J Pediatr Hematol Oncol 2019;41:7-12. https://doi.org/10.1097/MPH.0000000000001234.

[78]

Leichter AL, Sullivan MJ, Eccles MR et al. MicroRNA expression patterns and signaling pathways in the development and progression of childhood solid tumours. Mol Cancer 2017;16:15. https://doi.org/10.1186/s12943-017-0584-0.

[79]

Liu W, Chen S, Liu B. Diagnostic and prognostic values of serum exosomal microRNA-21 in children with hepatoblastoma: a Chinese population-based study. Pediatr Surg Int 2016;32:105965. https://doi.org/10.1007/s00383-016-3960-8.

[80]

Weiss JBW, Wagner AE, Eberherr C et al. High expression of IGF2-derived intronic miR-483 predicts outcome in hepatoblastoma. Cancer Biomark 2020;28:321-8. https://doi.org/10.3233/CBM-191390.

[81]

Cao Y, Wu S, Tang H. An update on diagnosis and treatment of hepatoblastoma. Biosci Trends 2024;17:445-57. https://doi.org/10.5582/bst.2023.01311.

[82]

Notarpaolo A, Layese R, Magistri P et al. Validation of the AFP model as a predictor of HCC recurrence in patients with viral hepatitis-related cirrhosis who had received a liver transplant for HCC. J Hepatol 2017;66:552-9. https://doi.org/10.1016/j.jhep.2016.10.038.

[83]

Meyers RL, Maibach R, Hiyama E et al. Risk-stratified staging in paediatric hepatoblastoma: a unified analysis from the Children's Hepatic tumors International Collaboration. Lancet Oncol 2017;18:122-31. https://doi.org/10.1016/S1470-2045(16)30598-8.

[84]

Chen F, Zhang F, Liu Y et al. Simply and sensitively simultaneous detection hepatocellular carcinoma markers AFP and miRNA-122 by a label-free resonance light scattering sensor. Talanta 2018;186:473-80. https://doi.org/10.1016/j.talanta.2018.04.060.

[85]

Attia AM, Rezaee-Zavareh MS, Hwang SY et al. Novel biomarkers for early detection of hepatocellular carcinoma. Diagnostics 2024;14:2278. https://doi.org/10.3390/diagnostics14202278.

[86]

Jing Y, Liang W, Liu J et al. Autophagy-mediating microRNAs in cancer chemoresistance. Cell Biol Toxicol 2020;36:517-36. https://doi.org/10.1007/s10565-020-09553-1.

[87]

Ding Y, Huang X, Ji T et al. The emerging roles of miRNAmediated autophagy in ovarian cancer. Cell Death Dis 2024;15:314. https://doi.org/10.1038/s41419-024-06677-8.

[88]

Feng X, Zou B, Nan T et al. MiR-25 enhances autophagy and promotes sorafenib resistance of HCC via targeting FBXW7. Int J Med Sci 2022;19:257-66. https://doi.org/10.7150/ijms.67352.

[89]

Xu Y, Liu Y, Li Z et al. Long non-coding RNA H19 is involved in sorafenib resistance in hepatocellular carcinoma by upregulating miR-675. Oncol Rep 2020;44:165-73. https://doi.org/10.3892/or.2020.7608.

[90]

Xu C, Sun W, Liu J et al. Circ_RBM23 knockdown suppresses chemoresistance, proliferation, migration and invasion of sorafenib-resistant hepatocellular carcinoma cells through miR-338-3p/RAB1B axis. Pathol Res Pract 2023;245:154435. https://doi.org/10.1016/j.prp.2023.154435.

[91]

Zheng ZH, You HY, Feng YJ et al. LncRNA KCNQ1OT 1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells. Mol Cell Biochem 2021;476:257585. https://doi.org/10.1007/s11010-020-03856-x.

[92]

He J, He J, Min L et al. Extracellular vesicles transmitted miR-315p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma. Int J Cancer 2020;146:1052-63. https://doi.org/10.1002/ijc.32543.

[93]

Gramantieri L, Pollutri D, Gagliardi M et al. MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in HCC. Cancer Res 2020;80:1720-34. https://doi.org/10.1158/0008-5472.CAN-19-0472.

[94]

Kohno T, Morishita A, Iwama H et al. Comprehensive analysis of circulating microRNAs as predictive biomarkers for sorafenib therapy outcome in hepatocellular carcinoma. Oncol Lett 2020;20:1727-33. https://doi.org/10.3892/ol.2020.11696.

[95]

de la Cruz-Ojeda P, Parras-Martínez E, Rey-Pérez R et al. In silico analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells. World J Gastroenterol 2025;31:95207. https://doi.org/10.3748/wjg.v31.i3.95207.

[96]

Akhtarkhavari T, Bahrami AR, Matin MM. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022;932:175233. https://doi.org/10.1016/j.ejphar.2022.175233.

[97]

Xue L, Zhao Z, Wang M et al. A liquid biopsy signature predicts lymph node metastases in T1 oesophageal squamous cell carcinoma: implications for precision treatment strategy. Br J Cancer 2022;127:2052-9. https://doi.org/10.1038/s41416-022-01997-y.

[98]

Tang C, Wan Y, Zhang X et al. Co-delivery of circCDR1 and temozolomide with hyaluronic acid-chitosan nanoparticles inhibits glioma progression. Gen Physiol Biophys 2025;44:107-22. https://doi.org/10.4149/gpb_2024048.

[99]

Hawley ZCE, Pardo ID, Cao S et al. Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into non-human primates and mice. Mol Ther 2025;33:215-34. https://doi.org/10.1016/j.ymthe.2024.11.029.

[100]

Silvia Lima RQD, Vasconcelos CFM, Gomes JPA et al. miRNA21, an oncomiR that regulates cell proliferation, migration, invasion and therapy response in lung cancer. Pathol Res Pract 2024;263:155601. https://doi.org/10.1016/j.prp.2024.155601.

[101]

Taheri M, Hussen BM, Abdullah SR et al. Dysregulation of noncoding RNAs in wilms tumor. Pathol Res Pract 2023;246:154523. https://doi.org/10.1016/j.prp.2023.154523.

AI Summary AI Mindmap
PDF (1438KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/