Endocrinologists in golden age: opportunities enabled by artificial intelligence

Bing Li , Qingzheng Wu , Zhaohui Lyu

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) : pbaf030

PDF (432KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) :pbaf030 DOI: 10.1093/pcmedi/pbaf030
Dialogue
research-article

Endocrinologists in golden age: opportunities enabled by artificial intelligence

Author information +
History +
PDF (432KB)

Cite this article

Download citation ▾
Bing Li, Qingzheng Wu, Zhaohui Lyu. Endocrinologists in golden age: opportunities enabled by artificial intelligence. Precision Clinical Medicine, 2025, 8(4): pbaf030 DOI:10.1093/pcmedi/pbaf030

登录浏览全文

4963

注册一个新账户 忘记密码

Author contributions

Bing Li (Formal analysis, Project administration, Resources, Writing—original draft), Qingzheng Wu (Data curation, Software), and Zhaohui Lyu (Conceptualization, Supervision).

Conflict of interest

The authors declare no competing interests.

References

[1]

Ashwell E. The endocrine system and associated disorders. Br J Nurs 2022;31:316-20. https://doi.org/10.12968/bjon.2022.31.6.316.

[2]

Assié G, Allassonnière S. Artificial intelligence in endocrinology: on track toward great opportunities. The Journal of Clinical Endocrinology & Metabolism 2024;109:e1462-7. https://doi.org/10.1210/clinem/dgae154.

[3]

Shour AR, Anguzu R, Onitilo AA. Speech recognition technology and documentation efficiency. JAMA Netw Open 2025;8:e251526. https://doi.org/10.1001/jamanetworkopen.2025.1526

[4]

American Diabetes Association. 5. Lifestyle management: Standards of medical care in diabetes-2019. Diabetes Care 2019;42:S46-60. https://doi.org/10.2337/dc19-S005

[5]

Tang D, Liang F, Gu X et al. Exploration and analysis of risk factors for coronary artery disease with type 2 diabetes based on SHAP explainable machine learning algorithm. Sci Rep 2025;15:29521. https://doi.org/10.1038/s41598-025-11142-3.

[6]

Agirsory M, Oehlschlaeger MA. A machine learning approach for non-invasive PCOS diagnosis from ultrasound and clinical features. Sci Rep 2025;15:33638. https://doi.org/10.1038/s41598-025-10453-9

[7]

Ahlqvist E, Storm P, Käräjämäki A et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 2018;6:361-9. https://doi.org/10.1016/S2213-8587(18)30051-2.

[8]

Zou X, Zhou X, Zhu Z et al. Novel subgroups of patients with adult-onset diabetes in Chinese and US populations. Lancet Diabetes Endocrinol 2019;7:9-11. https://doi.org/10.1016/S2213-8587(18)30316-4.

[9]

Zhang H, Hu J, Zhu J et al. Machine learning-based metabolismrelated genes signature and immune infiltration landscape in diabetic nephropathy. Frontiers in Endocrinology 2022;13:1026938. https://doi.org/10.3389/fendo.2022.1026938.

[10]

Lorenzini G, Arbelaez Ossa L, Shaw DM et al. Artificial intelligence and the doctor-patient relationship expanding the paradigm of shared decision making. Bioethics 2023;37:424-9. https://doi.org/10.1111/bioe.13158.

AI Summary AI Mindmap
PDF (432KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/