Metabolic regulation of T cell production of IL-10 and IL-22 protects against intestinal inflammation

Han Liu , Xiaojing Zhao , Tianming Yu , Yu Yu , Suxia Yao , Wenjing Yang , Yingzi Cong

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) : pbaf025

PDF (1591KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) :pbaf025 DOI: 10.1093/pcmedi/pbaf025
Research Article
research-article

Metabolic regulation of T cell production of IL-10 and IL-22 protects against intestinal inflammation

Author information +
History +
PDF (1591KB)

Abstract

Objectives: Inflammatory bowel disease is driven by dysregulated CD4⁺ T cell responses to the intestinal microbiota. While T cells can exacerbate inflammation by producing proinflammatory cytokines, they also produce anti-inflammatory mediators, such as interleukin 10 (IL-10) and IL-22. However, the metabolic programs that regulate IL-10 and IL-22 production remain incompletely defined.

Methods: We used CBir1 transgenic mice and in vitro Th1 polarization assays to investigate how metabolic pathways regulate T cell production of IL-10 and IL-22. A panel of metabolic inhibitors was tested for their effects on cytokine expression. Transcriptional mechanisms were assessed using bulk RNA sequencing, qPCR, Enzyme-linked immunosorbent (ELISA), and CRISPR-Cas9-mediated gene editing. Functional relevance was validated using Citrobacter rodentium infection and T cell suppression assays in vivo and in vitro.

Results: Among tested metabolic inhibitors, dichloroacetate (DCA) significantly enhanced IL-10 and IL-22 production by CD4⁺ T cells. DCA increased maximal oxygen consumption and decreased lactate secretion in T cells. Mechanistically, DCA upregulated aryl hydrocarbon receptor (Ahr) and downregulated Bhlhe40, without affecting Prdm1. Pharmacologic inhibition of Ahr suppressed DCA-induced IL-22, but not IL-10, while Bhlhe40 knockout enhanced IL-10 production, identifying distinct transcriptional regulators for each cytokine. Functionally, DCA-treated Th1 cells suppressed naïve T cell proliferation via IL-10. In an in vivo experiment, DCA treatment protected mice from C. rodentium-induced colitis.

Conclusions: Our findings demonstrate that DCA enhances IL-22 and IL-10 production in Th1 cells through Ahr and Bhlhe40, respectively. These results identify a novel metabolic mechanism by which DCA promotes mucosal immune regulation and highlight its potential as a therapeutic strategy for inflammatory bowel disease.

Keywords

T cell metabolism / IL-10 / IL-22 / dichloroacetate / Ahr / Bhlhe40

Cite this article

Download citation ▾
Han Liu, Xiaojing Zhao, Tianming Yu, Yu Yu, Suxia Yao, Wenjing Yang, Yingzi Cong. Metabolic regulation of T cell production of IL-10 and IL-22 protects against intestinal inflammation. Precision Clinical Medicine, 2025, 8(4): pbaf025 DOI:10.1093/pcmedi/pbaf025

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

This work was supported by the Crohn’s & Colitis Foundation, award number 1005605, project title STING suppresses colitis through regulation of intestinal barrier function (W.Y.).

Author contributions

Han Liu (Data curation, Formal analysis, Investigation, Validation, Visualization, Writing - original draft, Writing - review & editing), Xiaojing Zhao (Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing - review & editing), Tianming Yu (Data curation, Investigation, Writing - review & editing), Yu Yu (Investigation, Writing - review & editing), Suxia Yao (Investigation, Methodology, Writing - review & editing), Wenjing Yang (Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Resources, Supervision, Visualization, Writing - original draft, Writing - review & editing), and Yingzi Cong (Conceptualization, Data curation, Methodology, Project administration, Resources, Software, Supervision, Validation, Writing - review & editing).

Supplementary data

Supplementary data is available at PCMEDI Journal online.

Conflict of interest

None declared. In addition, as an Editorial Board Member of Precision Clinical Medicine, the corresponding author Y.C. was blinded from reviewing and making decisions on this manuscript.

References

[1]

Zeng Z, Jiang M, Li X et al. Precision medicine in inflammatory bowel disease. Precis Clin Med 2023;6:pbad033. https://doi.org/10.1093/pcmedi/pbad033

[2]

Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev 2013;252:164-82. https://doi.org/10. 1111 /imr. 12039

[3]

Yang W, Cong Y. Exploring colitis through dynamic T cell adoptive transfer models. Inflamm Bowel Dis 2023;29:1673-80. https://doi.org/10.1093/ibd/izad160

[4]

Ju L, Suo Z, Lin J et al. Fecal microbiota and metabolites in the pathogenesis and precision medicine for inflammatory bowel disease. Precis Clin Med 2024;7:pbae023. https://doi.org/10.1093/pcmedi/pbae023

[5]

Lee JY, Hall JA, Kroehling L et al. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 2020;180:79-91.e16. https://doi.org/10.1016/j.cell.2019.11.026

[6]

Gomez-Bris R, Saez A, Herrero-Fernandez B et al. CD 4 T-cell subsets and the pathophysiology of inflammatory bowel disease. Int J Mol Sci 2023;24:2696. https://doi.org/10.3390/ijms24032696

[7]

Gao H, Sun M, Li A et al. Microbiota-derived IPA alleviates intestinal mucosal inflammation through upregulating Th1/Th 17 cell apoptosis in inflammatory bowel disease. Gut Microbes 2025;17:2467235. https://doi.org/10.1080/19490976.2025.2467235

[8]

Korn T, Bettelli E, Oukka M et al. IL-17 and Th17 cells. Annu. Rev. Immunol. 2009; 27:485-517. https://doi.org/10.1146/annurev.immunol.021908.132710

[9]

Zhu X, Zhu J. CD 4 T helper cell subsets and related Human immunological disorders. Int J Mol Sci 2020;21:8011. https://doi.org/10.3390/ijms21218011

[10]

Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 2015;135:626-35. https://doi.org/10.1016/j.jaci.2014.11.001

[11]

Goldberg R, Prescott N, Lord GM et al. The unusual suspectsinnate lymphoid cells as novel therapeutic targets in IBD. Nat Rev Gastroenterol Hepatol 2015;12:271-83. https://doi.org/10.1038/nrgastro.2015.52

[12]

Zindl CL, Witte SJ, Laufer VA et al. A nonredundant role for T cellderived interleukin 22 in antibacterial defense of colonic crypts. Immunity 2022;55:494-511.e411. https://doi.org/10.1016/j.immuni.2022.02.003

[13]

Hochrein SM, Wu H, Eckstein M et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolyticepigenetic reprogramming. Cell Metab 2022;34:516-532.e511. https://doi.org/10.1016/j.cmet.2022.02.015

[14]

Kanekura T. CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via regulation of glycolysis. IntJ Mol Sci 2023;24:17344. https://doi.org/10.3390/ijms242417344

[15]

Peng M, Yin N, Chhangawala S et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 2016;354:481-4. https://doi.org/10.1126/science.aaf6284

[16]

Sivasami P, Elkins C, Diaz-Saldana PP et al. Obesity-induced dysregulation of skin-resident ppar γ(+) treg cells promotes IL-17A-mediated psoriatic inflammation. Immunity 2023;56:18441861.e1846. https://doi.org/10.1016/j.immuni.2023.06.021

[17]

Alissafi T, Kalafati L, Lazari M et al. Mitochondrial oxidative damage underlies regulatory T cell defects in autoimmunity. Cell Metab 2020;32:591-604.e597. https://doi.org/10.1016/j.cmet.2020.07.001

[18]

Sabogal-Guáqueta AM, Marmolejo-Garza A, Trombetta-Lima M et al. Species-specific metabolic reprogramming in human and mouse microglia during inflammatory pathway induction. Nat Commun 2023;14:6454. https://doi.org/10.1038/s41467-023-42096-7

[19]

Ashton TM, McKenna WG, Kunz-Schughart LA et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 2018;24:2482-90. https://doi.org/10.1158/1078-0432.CCR-17-3070

[20]

Li X, Jiang Y, Meisenhelder J et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell 2016;61:705-19. https://doi.org/10.1016/j.molcel.2016.02.009

[21]

Cenigaonandia-Campillo A, Serna-Blasco R, Gómez-Ocabo L et al. Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer. Theranostics 2021;11:3595-606. https://doi.org/10.7150/thno.51265

[22]

Golias T, Kery M, Radenkovic S et al. Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. IntJ Cancer 2019;144:674-86. https://doi.org/10.1002/ijc.31812

[23]

Rodrigues AS, Correia M, Gomes A et al. Dichloroacetate, the pyruvate dehydrogenase complex and the modulation of mESC pluripotency. PLoS One 2015;10:e0131663. https://doi.org/10.1371/journal.pone.0131663

[24]

Stacpoole PW, Greene YJ. Dichloroacetate. Diabetes Care 1992;15:785-91. https://doi.org/10.2337/diacare.15.6.785

[25]

Korsakova L, Krasko JA, Stankevicius E. Metabolic-targeted combination therapy with dichloroacetate and Metformin suppresses glioblastoma cell line growth In vitro and In vivo. In Vivo 2021;35:341-8. https://doi.org/10.21873/invivo.12265

[26]

Stacpoole PW, Kurtz TL, Han Z et al. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adu Drug Deliv Rev 2008;60:1478-87. https://doi.org/10.1016/j.addr.2008.02.014

[27]

Abdel-Razek EA, Mahmoud HM, Azouz AA. Management of ulcerative colitis by dichloroacetate: impact on NFATC1/NLRP3/IL1B signaling based on bioinformatics analysis combined with in vivo experimental verification. Inflammopharmacology 2024;32:667-82. https://doi.org/10.1007/s10787-023-01362-2

[28]

Schoenmann N, Tannenbaum N, Hodgeman RM et al. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim Biophys Acta Mol Basis Dis 2023;1869:166769. https://doi.org/10.1016/j.bbadis.2023.166769

[29]

Jin J, Yuan P, Yu W et al. Mitochondria-targeting polymer micelle of dichloroacetate induced pyroptosis to enhance Osteosarcoma immunotherapy. ACS Nano 2022;16:10327-40. https://doi.org/10.1021/acsnano.2c00192

[30]

Makita N, Ishiguro J, Suzuki K et al. Dichloroacetate induces regulatory T-cell differentiation and suppresses Th17-cell differentiation by pyruvate dehydrogenase kinase-independent mechanism. J Pharm Pharmacol 2017;69:43-51. https://doi.org/10.1111/jphp.12655

[31]

Feng T, Elson CO, Cong Y. Microbiota: dual-faceted player in experimental colitis. Gut Microbes 2010;1:388-91. https://doi.org/10.4161/gmic.1.6.13727

[32]

Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor. Clin Rev Allergy Immunol 2020;59:38290. https://doi.org/10.1007/s12016-020-08789-3

[33]

Cook ME, Jarjour NN, Lin CC et al. Transcription factor Bhlhe40 in immunity and autoimmunity. Trends Immunol 2020;41:1023-36. https://doi.org/10.1016/j.it.2020.09.002

[34]

Uyeda MJ, Freeborn RA, Cieniewicz B et al. BHLHE40 Regulates IL10 and IFN-γ production in T cells but does not interfere with Human type 1 regulatory T cell differentiation. Front Immunol 2021;12:683680. https://doi.org/10.3389/fimmu.2021.683680

[35]

Smith LK, Boukhaled GM, Condotta SA et al. Interleukin-10 directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 2018;48:299312.e295. https://doi.org/10.1016/j.immuni.2018.01.006

[36]

Liu B, Tonkonogy SL, Sartor RB. Antigen-presenting cell production of IL-10 inhibits T-helper 1 and 17 cell responses and suppresses colitis in mice. Gastroenterology 2011;141:653-62.e4. https://doi.org/10.1053/j.gastro.2011.04.053

[37]

Liu SL, Zhao P, Zhou YM et al. IL-10 alleviates aTCMR by inhibiting NFATc1 signaling pathway of T cells after kidney transplantation. Biochim Biophys Acta Mol Basis Dis 2025;1871:167857. https://doi.org/10.1016/j.bbadis.2025.167857

[38]

Nguyen HD, Aljamaei HM, Stadnyk AW. The production and function of endogenous interleukin-10 in intestinal epithelial cells and gut homeostasis. Cell Mol Gastroenterol Hepatol 2021;12:1343-52. https://doi.org/10.1016/j.jcmgh.2021.07.005

[39]

Branchett WJ, Saraiva M, O'Garra A. Regulation of inflammation by interleukin-10 in the intestinal and respiratory mucosa. Curr Opin Immunol 2024;91:102495. https://doi.org/10.1016/j.coi.2024.102495

[40]

Klotskova HB, Kidess E, Nadal AL et al. The role of interleukin 22 in mammalian intestinal homeostasis: friend and foe. Immun Inflamm Dis 2024;12:e1144. https://doi.org/10.1002/iid3.1144

[41]

Yang W, Yu T, Huang X et al. Intestinal microbiota-derived shortchain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020;11:4457. https://doi.org/10.1038/s41467-020-18262-6

[42]

Pavel C, Diculescu MM, Ilie M et al. Immunohistochemistry analysis in inflammatory bowel disease-should we bring to light interleukin-10? Biomedicines 2025;13:406. https://doi.org/10.3390/biomedicines13020406

[43]

Liu M, Yuan W, Park S. Association between IL-10 rs3024505 and susceptibility to inflammatory bowel disease: A systematic review and meta-analysis. Cytokine 2022;149:155721. https://doi.org/10.1016/j.cyto.2021.155721

[44]

Keubler LM, Buettner M, Häger C et al. A multihit model: colitis lessons from the interleukin-10-deficient mouse. Inflamm Bowel Dis 2015;21:1967-75. https://doi.org/10.1097/MIB.0000000000000468

[45]

Saha P, Golonka RM, Abokor AA et al. IL-10 receptor neutralization-induced colitis in mice: A comprehensive guide. Curr Protoc 2021;1:e227. https://doi.org/10.1002/cpz1.227

[46]

Veenbergen S, Li P, Raatgeep HC et al. IL-10 signaling in dendritic cells controls IL-1β-mediated ifn γ secretion by human CD4( + ) T cells: relevance to inflammatory bowel disease. Mucosal Immunol 2019;12:1201-11. https://doi.org/10.1038/s41385-019-0194-9

[47]

Glocker EO, Kotlarz D, Boztug K et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N EnglJ Med 2009;361:2033-45. https://doi.org/10.1056/NEJMoa0907206

[48]

Chaudhry A, Samstein RM, Treuting P et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011;34:566-78. https://doi.org/10.1016/j.immuni.2011.03.018

[49]

Shouval DS, Biswas A, Goettel JA et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 2014;40:706-19. https://doi.org/10.1016/j.immuni.2014.03.011

[50]

Asseman C, Mauze S, Leach MW et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190:995-1004. https://doi.org/10.1084/jem.190.7.995

[51]

Lo BC, Shin SB,Canals Hernaez D et al. IL-22 preserves gut epithelial integrity and promotes disease remission during chronic Salmonella infection. J Immunol 2019;202:956-65. https://doi.org/10.4049/jimmunol.1801308

[52]

Arshad T, Mansur F, Palek R et al. A double edged sword role of interleukin-22 in wound healing and tissue regeneration. Front Immunol 2020;11:2148. https://doi.org/10.3389/fimmu.2020.02148

[53]

Brockmann L, Tran A, Huang Y et al. Intestinal microbiotaspecific Th17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity 2023;56:27192735.e2717. https://doi.org/10.1016/j.immuni.2023.11.003

[54]

Ahlers J, Mantei A, Lozza L et al. A Notch/STAT3-driven blimp-1/c-maf-dependent molecular switch induces IL-10 expression in human CD4(+) T cells and is defective in Crohn's disease patients. Mucosal Immunol 2022;15:480-90. https://doi.org/10.1038/s41385-022-00487-x

[55]

Gabryšová L, Alvarez-Martinez M, Luisier R et al. c-maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4(+) T cells. Nat Immunol 2018;19:497507.

[56]

Yang W, Chen L, Xu L et al. MicroRNA-10a negatively regulates CD4(+) T cell IL-10 production through suppression of Blimp1. J Immunol 2021;207:985-95. https://doi.org/10.4049/jimmunol.2100017

[57]

Stacpoole PW, Harman EM, Curry SH et al. Treatment of lactic acidosis with dichloroacetate. N Engl J Med 1983;309:390-6. https://doi.org/10.1056/NEJM198308183090702

[58]

Mangal N, James MO, Stacpoole PW et al. Model informed dose optimization of dichloroacetate for the treatment of congenital lactic acidosis in children. J Clin Pharmacol 2018;58:212-20. https://doi.org/10.1002/jcph.1009

[59]

Zhang Z, Tang S, Qi M et al. Mitochondria-targeting natural product rhein conjugated with dichloroacetate as the dual inhibitor of glycolysis and oxidative phosphorylation to off energize cancer cells and induce ROS storm. Theranostics 2025;15:4909-29. https://doi.org/10.7150/thno.107812

[60]

Frisch AT, Wang Y, Xie B et al. Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy. Cell Metab 2025;37:870885.e878. https://doi.org/10.1016/j.cmet.2024.12.007

[61]

Benbelkacem M, Moulai N, Chader H et al. Dichloroacetate and chloroquine in combination with arsenite suppress ROSinduced oral squamous cell carcinoma (OSCC) development and improve BALB/c mice survival. Free Radic Biol Med 2025;227:593607. https://doi.org/10.1016/j.freeradbiomed.2024.12.035

AI Summary AI Mindmap
PDF (1591KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/