Metabolic regulation of T cell production of IL-10 and IL-22 protects against intestinal inflammation
Han Liu , Xiaojing Zhao , Tianming Yu , Yu Yu , Suxia Yao , Wenjing Yang , Yingzi Cong
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (4) : pbaf025
Metabolic regulation of T cell production of IL-10 and IL-22 protects against intestinal inflammation
Objectives: Inflammatory bowel disease is driven by dysregulated CD4⁺ T cell responses to the intestinal microbiota. While T cells can exacerbate inflammation by producing proinflammatory cytokines, they also produce anti-inflammatory mediators, such as interleukin 10 (IL-10) and IL-22. However, the metabolic programs that regulate IL-10 and IL-22 production remain incompletely defined.
Methods: We used CBir1 transgenic mice and in vitro Th1 polarization assays to investigate how metabolic pathways regulate T cell production of IL-10 and IL-22. A panel of metabolic inhibitors was tested for their effects on cytokine expression. Transcriptional mechanisms were assessed using bulk RNA sequencing, qPCR, Enzyme-linked immunosorbent (ELISA), and CRISPR-Cas9-mediated gene editing. Functional relevance was validated using Citrobacter rodentium infection and T cell suppression assays in vivo and in vitro.
Results: Among tested metabolic inhibitors, dichloroacetate (DCA) significantly enhanced IL-10 and IL-22 production by CD4⁺ T cells. DCA increased maximal oxygen consumption and decreased lactate secretion in T cells. Mechanistically, DCA upregulated aryl hydrocarbon receptor (Ahr) and downregulated Bhlhe40, without affecting Prdm1. Pharmacologic inhibition of Ahr suppressed DCA-induced IL-22, but not IL-10, while Bhlhe40 knockout enhanced IL-10 production, identifying distinct transcriptional regulators for each cytokine. Functionally, DCA-treated Th1 cells suppressed naïve T cell proliferation via IL-10. In an in vivo experiment, DCA treatment protected mice from C. rodentium-induced colitis.
Conclusions: Our findings demonstrate that DCA enhances IL-22 and IL-10 production in Th1 cells through Ahr and Bhlhe40, respectively. These results identify a novel metabolic mechanism by which DCA promotes mucosal immune regulation and highlight its potential as a therapeutic strategy for inflammatory bowel disease.
T cell metabolism / IL-10 / IL-22 / dichloroacetate / Ahr / Bhlhe40
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
/
| 〈 |
|
〉 |