Glycosylation in kidney diseases

Yingying Ling , Fei Cai , Tao Su , Yi Zhong , Ling Li , Bo Meng , Guisen Li , Meng Gong , Hao Yang , Xinfang Xie , Zhenyu Sun , Yang Zhao , Fang Liu , Yong Zhang

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (3) : pbaf017

PDF (3031KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (3) : pbaf017 DOI: 10.1093/pcmedi/pbaf017
Review
research-article

Glycosylation in kidney diseases

Author information +
History +
PDF (3031KB)

Abstract

Protein glycosylation is a critical post-translational modification that influences protein folding, localization, stability, and functional interactions by attaching glycans to specific sites. This process is crucial for biological functions of glycoproteins, and aberrant glyco-sylation can lead to genetic disorders, immune system issues, and multi-organ pathologies. Recent advancements in glycoproteomic technologies have made the study of protein glycosylation a key focus for understanding the pathogenesis of kidney diseases. This review provides a comprehensive overview of protein glycosylation mechanisms, its biological roles, molecular pathways, and signif-icant functions in renal physiology and pathology. It specifically highlights the dynamic changes and regulatory networks associated with aberrant glycosylation in kidney diseases such as immunoglobulin A nephropathy, diabetic kidney disease, autosomal domi-nant polycystic kidney disease, renal cell carcinoma, and acute kidney injury. It also evaluates the clinical applications of related technologies and biomarkers. Additionally, it discusses the challenges in developing glycosylation-targeted therapeutic strategies. Future research should focus on clarifying cell-specific glycosylation regulatory networks in the kidney, integrating glycobiology with multi-omics approaches, and improving precision diagnostics and treatment for kidney diseases.

Keywords

glycosylation / kidney diseases / glycoproteomics / mass spectrometry / biomarkers

Cite this article

Download citation ▾
Yingying Ling, Fei Cai, Tao Su, Yi Zhong, Ling Li, Bo Meng, Guisen Li, Meng Gong, Hao Yang, Xinfang Xie, Zhenyu Sun, Yang Zhao, Fang Liu, Yong Zhang. Glycosylation in kidney diseases. Precision Clinical Medicine, 2025, 8(3): pbaf017 DOI:10.1093/pcmedi/pbaf017

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

This study was supported by the National Key Research and Development Program of China (grant Nos. 2022YFF0608401, 2022YFF0608404, 2021YFF0702003-02) and the National Natural Science Foundation of China (grant No. 92478101).

Author contributions

Yingying Ling (Conceptualization, Data curation, Resources, Software, Writing—original draft), Fei Cai (Conceptualization, Methodology, Visualization, Writing—original draft), Tao Su (Methodology, Resources), Yi Zhong (Methodology, Resources), Ling Li (Methodology, Resources), Bo Meng (Methodology, Resources), Guisen Li (Methodology, Resources), Meng Gong (Methodology, Resources), Hao Yang (Methodology, Resources), Xinfang Xie (Methodology, Resources), Zhenyu Sun (Methodology, Resources, Writing—review & editing), Yang Zhao (Conceptualization, Funding acquisition, Writing—review & editing), Fang Liu (Methodology, Resources, Writing—review & editing), and Yong Zhang (Conceptualization, Funding acquisition, Writing—original draft, Writing—review & editing).

Conflict of interest

None declared.

References

[1]

Koye DN, Magliano DJ, Nelson RG et al. The Global epidemi-ology of diabetes and kidney disease. Adv Chronic Kidney Dis 2018; 25: 121-32. https://doi.org/10.1053/j.ackd.2017.10.011.

[2]

Hoenig MP, Zeidel ML. Homeostasis, the Milieu Intérieur, and the wisdom of the Nephron. Clinical Journal of the American Soci-ety of Nephrology 2014; 9: 1272-81. https://doi.org/10.2215/cjn.08860813.

[3]

Bikbov B, Purcell CA, Levey AS et al. Global, regional, and na-tional burden of chronic kidney disease, 1990-2017: a system-atic analysis for the Global Burden of Disease Study 2017. The Lancet 2020; 395: 709-33. https://doi.org/10.1016/s0140-6736(20)30045-3.

[4]

Ostermann M, Lumlertgul N, Jeong R et al. Acute kidney injury. The Lancet 2025; 405: 241-56. https://doi.org/10.1016/s0140-6736(24)02385-7.

[5]

Chen TK, Hoenig MP, Nitsch D et al. Advances in the manage-ment of chronic kidney disease. BMJ 2023; 383: e074216. https://doi.org/10.1136/bmj-2022-074216.

[6]

Bello AK, Okpechi IG, Levin A et al. An update on the global dis-parities in kidney disease burden and care across world coun-tries and regions. Lancet Glob Health 2024; 12: e382-95. https://doi.org/10.1016/s2214-109x(23)00570-3.

[7]

Liu Z, Yang J, Du M et al. Functioning and mechanisms of PTMs in renal diseases. Front Pharmacol 2023; 14: 1238706. https://doi.org/10.3389/fphar.2023.1238706.

[8]

Eichler J. Protein glycosylation. Curr Biol 2019; 29: R229-31. https://doi.org/10.1016/j.cub.2019.01.003.

[9]

Wu X, Xu M, Geng M et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted ther-apies. Signal Transduction and Targeted Therapy 2023; 8: 220. https://doi.org/10.1038/s41392-023-01439-y.

[10]

Flynn RA, Pedram K, Malaker SA et al. Small RNAs are mod-ified with N-glycans and displayed on the surface of living cells. Cell 2021; 184: 3109-3124.e22. https://doi.org/10.1016/j.cell.2021.04.023.

[11]

Schjoldager KT, Narimatsu Y, Joshi HJ et al. Global view of hu-man protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21: 729-49. https://doi.org/10.1038/s41580-020-00294-x.

[12]

Kelly MI, Albahrani M, Castro C et al. Importance of evalu-ating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflügers Archiv—European Journal of Physiology 2021; 473: 1041-59. https://doi.org/10.1007/s00424-021-02554-x.

[13]

Wu D, Robinson CV. Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry. Curr Opin Struct Biol 2022; 74: 102351. https://doi.org/10.1016/j.sbi.2022.102351.

[14]

Xu X, Peng Q, Jiang X et al. Altered glycosylation in Cancer: molecular functions and therapeutic potential. Cancer commu-nications (London, England) 2024; 44: 1316-36. https://doi.org/10.1002/cac2.12610.

[15]

Miljuš G, Penezić A, Pažitná L et al. Glycosylation and character-ization of Human transferrin in an end-stage kidney disease. Int J Mol Sci 2024; 25: 4625. https://doi.org/10.3390/ijms25094625.

[16]

Lampson BL, Ramírez AS, Baro M et al. Positive selection CRISPR screens reveal a druggable pocket in an oligosaccha-ryltransferase required for inflammatory signaling to NF-κb. Cell 2024; 187: 2209-2223.e16. https://doi.org/10.1016/j.cell.2024.03.022.

[17]

Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21: 525-44. https://doi.org/10.1038/s41569-024-00998-z.

[18]

Lei Y, Liu Q, Chen B et al. Protein O-GlcNAcylation coupled to Hippo signaling drives vascular dysfunction in diabetic retinopathy. Nat Commun 2024; 15: 9334. https://doi.org/10.1038/s41467-024-53601-x.

[19]

Wang Y, Chen H. Protein glycosylation alterations in hepatocel-lular carcinoma: function and clinical implications. Oncogene 2023; 42: 1970-9. https://doi.org/10.1038/s41388-023-02702-w.

[20]

Zhao J, Lang M. New insight into protein glycosylation in the development of Alzheimer’s disease. Cell Death Discovery 2023; 9: 314. https://doi.org/10.1038/s41420-023-01617-5.

[21]

Medzihradszky KF, Kaasik K, Chalkley RJ. Tissue-specific glycosylation at the glycopeptide level. Mol Cell Proteomics 2015; 14: 2103-10. https://doi.org/10.1074/mcp.M115.050393.

[22]

Schwarz F, Aebi M. Mechanisms and principles of N-linked pro-tein glycosylation. Curr Opin Struct Biol 2011; 21: 576-82. https://doi.org/10.1016/j.sbi.2011.08.005.

[23]

Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol 2021; 100: 151186. https://doi.org/10.1016/j.ejcb.2021.151186.

[24]

Lin Y, Lubman DM. The role of N-glycosylation in cancer. Acta Pharmaceutica Sinica B 2024; 14: 1098-110. https://doi.org/10.1016/j.apsb.2023.10.014.

[25]

Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The as-pects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14: 1188838. https://doi.org/10.3389/fimmu.2023.1188838.

[26]

Krug J, Rodrian G, Petter K et al. N-glycosylation regulates in-trinsic IFN-γresistance in colorectal cancer: implications for immunotherapy. Gastroenterology 2023; 164: 392-406.https://doi.org/10.1053/j.gastro.2022.11.018.

[27]

Pasala C, Sharma S, Roychowdhury T et al. N-glycosylation as a modulator of protein conformation and assembly in dis-ease. Biomolecules 2024; 14: 282. https://doi.org/10.3390/biom14030282.

[28]

Torok R, Horompoly K, Szigeti M et al. N-glycosylation profiling of Human blood in type 2 diabetes by capillary electrophoresis: A preliminary study. Molecules 2021; 26: 6399. https://doi.org/10.3390/molecules26216399.

[29]

Memarian E, Nilsson PM, Zia I et al. The risk of chronic kidney disease in relation to anthropometric measures of obesity: A Swedish cohort study. BMC Nephrology 2021; 22: 330. https://doi.org/10.1186/s12882-021-02531-7.

[30]

Chatham JC, Zhang J, Wende AR. Role of O-linked N-acetylglucosamine protein modification in cellular (Patho)physiology. Physiol Rev 2021; 101: 427-93. https://doi.org/10.1152/physrev.00043.2019.

[31]

Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc cycling regulate gene transcription: emerging roles in cancer. Cancers 2021; 13: 1666. https://doi.org/10.3390/cancers13071666.

[32]

Collette AM, Hassan SA, Schmidt SI et al. An unusual dual sugar-binding lectin domain controls the substrate specificity of a mucin-type O-glycosyltransferase. Sci Adv 2024; 10: eadj8829. https://doi.org/10.1126/sciadv.adj8829.

[33]

Bennett EP, Mandel U, Clausen H et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22: 736-56. https://doi.org/10.1093/glycob/cwr182.

[34]

Ten Hagen KG. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 2003; 13: 1R-6. https://doi.org/10.1093/glycob/cwg007.

[35]

Wang S, Tan P, Wang H et al. Swainsonine inhibits autophagic degradation and causes cytotoxicity by reducing CTSD O-GlcNAcylation. Chem Biol Interact 2023; 382: 110629. https://doi.org/10.1016/j.cbi.2023.110629.

[36]

Reily C, Stewart TJ, Renfrow MB et al. Glycosylation in health and disease. Nat Rev Nephrol 2019; 15: 346-66. https://doi.org/10.1038/s41581-019-0129-4.

[37]

Chen L, Zhou Q, Zhang P et al. Direct stimulation of de novo nucleotide synthesis by O-GlcNAcylation. Nat Chem Biol 2024; 20: 19-29. https://doi.org/10.1038/s41589-023-01354-x.

[38]

Kweon TH, Jung H, Ko JY et al. O-GlcNAcylation of RBM14 con-tributes to elevated cellular O-GlcNAc through regulation of OGA protein stability. Cell Rep 2024; 43: 114163. https://doi.org/10.1016/j.celrep.2024.114163.

[39]

Brockhausen I, Schutzbach J, Kuhns W. Glycoproteins and their relationship to human disease. Cells Tissues Organs 1998; 161: 36-78. https://doi.org/10.1159/000046450.

[40]

Costa TJ, Wilson EW, Fontes MT et al. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Colch) 2023; 137: 1683-97. https://doi.org/10.1042/cs20220309.

[41]

Zhao Q, Zhou S, Lou W et al. Crosstalk between O-GlcNAcylation and phosphorylation in metabolism: regulation and mechanism. Cell Death Differ 2025; 32: 1181-99. https://doi.org/10.1038/s41418-025-01473-z.

[42]

He XF, Hu X, Wen GJ et al. O-GlcNAcylation in cancer develop-ment and immunotherapy. Cancer Lett 2023; 566: 216258. https://doi.org/10.1016/j.canlet.2023.216258.

[43]

Zeng X, Chen Z, Zhu Y et al. O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma. Drug Resist Updat 2024; 77: 101150. https://doi.org/10.1016/j.drup.2024.101150.

[44]

Jiang M, Xu B, Li X et al. O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene 2019; 38: 301-16. https://doi.org/10.1038/s41388-018-0435-5.

[45]

Prakash S, Steers NJ, Li Y et al. Loss of GalNAc-T14 links O-glycosylation defects to alterations in B cell homing in IgA nephropathy. J Clin Invest 2025; 135: e181164. https://doi.org/10.1172/jci181164.

[46]

Athanassiadou V, Plavoukou S, Grapsa E et al. The role of Heme Oxygenase-1 as an immunomodulator in kidney dis-ease. Antioxidants 2022; 11: 2454. https://doi.org/10.3390/antiox11122454.

[47]

Nagy T, Fisi V, Frank D et al. Hyperglycemia-induced aberrant cell proliferation; A metabolic challenge mediated by protein O-GlcNAc modification. Cells, 2019; 8: 999. https://doi.org/10.3390/cells8090999.

[48]

Akimoto Y, Miura Y, Toda T et al. Morphological changes in di-abetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including α-actinin 4. Clinical proteomics 2011; 8: 15. https://doi.org/10.1186/1559-0275-8-15.

[49]

Chrispeels MJ, Raikhel NV. Lectins, lectin genes, and their role in plant defense. Plant Cell 1991; 3: 1-9. https://doi.org/10.1105/tpc.3.1.1.

[50]

Hirabayashi J, Kuno A, Tateno H. Development and applications of the Lectin microarray. Top Curr Chem 2015; 367: 105-24. https://doi.org/10.1007/128_2014_612.

[51]

Hirabayashi J, Yamada M, Kuno A et al. Lectin microarrays: con-cept, principle and applications. Chem Soc Rev 2013; 42: 4443-58. https://doi.org/10.1039/c3cs35419a.

[52]

Yang H, Lin Z, Wu B et al. Deciphering disease through glycan codes: leveraging lectin microarrays for clinical insights. Acta Biochim Biophy Sin 2024; 56: 1145-55. https://doi.org/10.3724/abbs.2024123.

[53]

McDowell CT, Klamer Z, Hall J et al. Imaging mass spectrom-etry and lectin analysis of N-linked glycans in carbohydrate antigen-defined pancreatic cancer tissues. 2021; 20: 100012. https://doi.org/10.1074/mcp.RA120.002256.

[54]

Yang L, Yang Q, Lin L et al. LectoScape: A highly multiplexed imaging platform for glycome analysis and biomedical diagno-sis. Anal Chem 2024; 96: 6558-65. https://doi.org/10.1021/acs.analchem.3c04925.

[55]

Bunz SC, Rapp E, Neusüss C. Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal Chem 2013; 85: 10218-24. https://doi.org/10.1021/ac401930j.

[56]

Danyluk HJ, Shum LK, Zandberg WF. A rapid procedure for the purification of 8-aminopyrene trisulfonate (APTS)-labeled gly-cans for capillary electrophoresis (CE)-based enzyme assays. Methods Mol Biol 2017; 1588: 223-36. https://doi.org/10.1007/978-1-4939-6899-2_18.

[57]

Khatri K, Klein JA, Haserick JR et al. Microfluidic capillary electrophoresis-mass spectrometry for analysis of monosac-charides, oligosaccharides, and glycopeptides. Anal Chem 2017; 89: 6645-55. https://doi.org/10.1021/acs.analchem.7b00875.

[58]

Grace PS, Dolatshahi S, Lu LL et al. Antibody subclass and gly-cosylation shift following effective TB treatment. Front Immunol 2021; 12: 679973. https://doi.org/10.3389/fimmu.2021.679973.

[59]

Ongay S, Boichenko A, Govorukhina N et al. Glycopeptide en-richment and separation for protein glycosylation analysis. J Sep Sci 2012; 35: 2341-72. https://doi.org/10.1002/jssc.201200434.

[60]

Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. Mass Spectrom Rev 2023; 42: 887-917. https://doi.org/10.1002/mas.21771.

[61]

Wilson ID, Nicholson JK, Castro-Perez J et al. High resolution “ultra performance”liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic path-way profiling in functional genomic studies. J Proteome Res 2005; 4: 591-8. https://doi.org/10.1021/pr049769r.

[62]

Nahar L, Onder A, Sarker SD. A review on the recent ad-vances in HPLC, UHPLC and UPLC analyses of naturally occur-ring cannabinoids (2010-2019). Phytochem Anal 2020; 31: 413-57. https://doi.org/10.1002/pca.2906.

[63]

Adamczyk B, Stöckmann H, O’Flaherty R et al. In High-Throughput Glycomics and Glycoproteomics Methods in Molecular Bi-ology Ch. Chapter 8, 2017;97-108.

[64]

Stöckmann H, Duke RM, Millán Martín S et al. Ultrahigh throughput, ultrafiltration-based n-glycomics platform for ul-traperformance liquid chromatography (ULTRA(3)). Anal Chem 2015; 87: 8316-22. https://doi.org/10.1021/acs.analchem.5b01463.

[65]

Saldova R, Kilcoyne M, Stöckmann H et al. Advances in ana-lytical methodologies to guide bioprocess engineering for bio-therapeutics. Methods 2017; 116: 63-83. https://doi.org/10.1016/j.ymeth.2016.11.002.

[66]

Tharmalingam T, Wu C-H, Callahan S et al. A framework for real-time glycosylation monitoring (RT-GM) in mammalian cell culture. Biotechnol Bioeng 2015; 112: 1146-54. https://doi.org/10.1002/bit.25520.

[67]

Rowe L, Burkhart G. Analyzing protein glycosylation using UH-PLC: a review. Bioanalysis 2018; 10: 1691-703. https://doi.org/10.4155/bio-2018-0156.

[68]

Perez de Souza L, Alseekh S, Scossa F et al. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods 2021; 18: 733-46. https://doi.org/10.1038/s41592-021-01116-4.

[69]

Tao S, Huang Y, Boyes BE et al. Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal Chem 2014; 86: 10584-90. https://doi.org/10.1021/ac5020996.

[70]

Khan SA, Mason RW, Kobayashi H et al. Advances in gly-cosaminoglycan detection. Mol Genet Metab 2020; 130: 101-9. https://doi.org/10.1016/j.ymgme.2020.03.004.

[71]

Demicheva E, Dordiuk V, Polanco Espino F et al. Advances in mass spectrometry-based blood metabolomics profiling for non-cancer diseases: A comprehensive review. Metabolites 2024; 14: 54. https://doi.org/10.3390/metabo14010054.

[72]

Giménez E, Mancera-Arteu M, Benavente F et al. Analy-sis of intact glycoproteins by matrix-assisted laser desorp-tion/ionization time-of-flight mass spectrometry. Methods Mol Biol 2021; 2271: 47-56. https://doi.org/10.1007/978-1-0716-1241-5_3.

[73]

Huffman JE, Pučić-Baković M, Klarić L et al. Comparative per-formance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Molecular & cellular proteomics : MCP 2014; 13: 1598-610. https://doi.org/10.1074/mcp.M113.037465.

[74]

Auer F, Jarvas G, Guttman A. Recent advances in the analysis of human milk oligosaccharides by liquid phase separation meth-ods. J Chromatogr B 2021; 1162: 122497. https://doi.org/10.1016/j.jchromb.2020.122497.

[75]

Sastre Toraño J, Aizpurua-Olaizola O, Wei N et al. Identification of isomeric N-glycans by conformer distribution fingerprinting using ion mobility mass spectrometry. Chemistry—A European Journal 2021; 27: 2149-54. https://doi.org/10.1002/chem.202004522.

[76]

Wang Y, Lei K, Zhao L et al. Clinical glycoproteomics: meth-ods and diseases. MedComm 2024; 5: e760. https://doi.org/10.1002/mco2.760.

[77]

Maekawa M, Mano N. Cutting-edge LC-MS/MS applications in clinical mass spectrometry: focusing on analysis of drugs and metabolites. Biomed Chromatogr 2022; 36: e5347. https://doi.org/10.1002/bmc.5347.

[78]

Reed CE, Fournier J, Vamvoukas N et al. Automated preparation of MS-sensitive fluorescently labeled N-glycans with a com-mercial pipetting robot. SLAS Technology 2018; 23: 550-9. https://doi.org/10.1177/2472630318762384.

[79]

Seger C, Salzmann L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem 2020; 82: 2-11. https://doi.org/10.1016/j.clinbiochem.2020.03.004.

[80]

Novak J, King RG, Yother J et al. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Gly-cobiology 2024; 34: cwae060. https://doi.org/10.1093/glycob/cwae060.

[81]

Ma X, Fernández FM. Advances in mass spectrometry imag-ing for spatial cancer metabolomics. Mass Spectrom Rev 2024; 43: 235-68. https://doi.org/10.1002/mas.21804.

[82]

Meng T, Huang R, Zeng Z et al. Identification of prognostic and metastatic alternative splicing signatures in kidney renal clear cell carcinoma. Front Bioeng Biotechnol 2019; 7: 270. https://doi.org/10.3389/fbioe.2019.00270.

[83]

Ren W, Bian Q, Cai Y. Mass spectrometry-based N-glycosylation analysis in kidney disease. Front Mol Biosci 2022; 9: 976298. https://doi.org/10.3389/fmolb.2022.976298.

[84]

Filippone EJ, Gulati R, Farber JL. Contemporary review of IgA nephropathy. Front Immunol 2024; 15: 1436923. https://doi.org/10.3389/fimmu.2024.1436923.

[85]

Pitcher D, Braddon F, Hendry B et al. Long-term outcomes in IgA nephropathy. Clinical Journal of the American Society of Nephrol-ogy 2023; 18: 727-38. https://doi.org/10.2215/cjn.0000000000000135.

[86]

Moldoveanu Z, Wyatt RJ, Lee JY et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 2007; 71: 1148-54. https://doi.org/10.1038/sj.ki.5002185.

[87]

Takahashi K, Smith AD, Poulsen K et al. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res 2012; 11: 692-702. https://doi.org/10.1021/pr200608q.

[88]

Yoo EM, Morrison SL. IgA: an immune glycoprotein. Clin Immunol 2005; 116: 3-10. https://doi.org/10.1016/j.clim.2005.03.010.

[89]

Woof JM, Russell MW. Structure and function relationships in IgA. Mucosal immunology 2011; 4: 590-7. https://doi.org/10.1038/mi.2011.39.

[90]

Novak J, Julian BA, Tomana M et al. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 2008; 28: 78-87. https://doi.org/10.1016/j.semnephrol.2007.10.009.

[91]

Ju T, Cummings RD. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci 2002; 99: 16613-8. https://doi.org/10.1073/pnas.262438199.

[92]

Ju T, Brewer K, D’Souza A et al. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 2002; 277: 178-86. https://doi.org/10.1074/jbc.M109060200.

[93]

Kiryluk K, Li Y, Moldoveanu Z et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLos Genet 2017; 13: e1006609. https://doi.org/10.1371/journal.pgen.1006609.

[94]

Gale DP, Molyneux K, Wimbury D et al. Galactosylation of IgA 1 is associated with common variation in C1GALT1. J Am Soc Nephrol 2017; 28: 2158-66. https://doi.org/10.1681/asn.2016091043.

[95]

Suzuki H, Moldoveanu Z, Hall S et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glyco-sylated IgA1. J Clin Invest 2008; 118: 629-39. https://doi.org/10.1172/jci33189.

[96]

Stuchlova Horynova M, Vrablikova A, Stewart TJ et al. N-acetylgalactosaminide α2,6-sialyltransferase II is a candi-date enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrol Dial Transplant 2015; 30: 234-8. https://doi.org/10.1093/ndt/gfu308.

[97]

Zhao N, Hou P, Lv J et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 2012; 82: 790-6. https://doi.org/10.1038/ki.2012.197.

[98]

Camilla R, Suzuki H, Daprà V et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clinical Journal of the American Society of Nephrology 2011; 6: 1903-11. https://doi.org/10.2215/cjn.11571210.

[99]

Berthoux F, Suzuki H, Thibaudin L et al. Autoantibodies target-ing galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 2012; 23: 1579-87. https://doi.org/10.1681/asn.2012010053.

[100]

Lin YC, Chang YH, Yang SY et al. Update of pathophysiol-ogy and management of diabetic kidney disease. J Formos Med Assoc 2018; 117: 662-75. https://doi.org/10.1016/j.jfma.2018.02.007.

[101]

Thomas MC, Brownlee M, Susztak K et al. Diabetic kidney dis-ease. Nat Rev Dis Primers 2015; 1: 15018. https://doi.org/10.1038/nrdp.2015.18.

[102]

Pan X, He H, Bao Y et al. Chinese expert consensus on the man-agement of hypertension in adults with type 2 diabetes. Journal of evidence-based medicine 2024; 17: 851-64. https://doi.org/10.1111/jebm.12655.

[103]

Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glu-cose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 1991; 266: 4706-12. https://doi.org/10.1016/S0021-9258(19)67706-9.

[104]

Paneque A, Fortus H, Zheng J et al. The hexosamine biosyn-thesis pathway: regulation and function. Genes 2023; 14: 933. https://doi.org/10.3390/genes14040933.

[105]

Qi B, Chen Y, Chai S et al. O-linked β-N-acetylglucosamine (O-GlcNAc) modification: emerging pathogenesis and a therapeu-tic target of diabetic nephropathy. Diabet Med 2025; 42: e15436. https://doi.org/10.1111/dme.15436.

[106]

Poungvarin N, Lee JK, Yechoor VK et al. Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in beta cell glucotoxicity. Diabetologia 2012; 55: 1783-96. https://doi.org/10.1007/s00125-012-2506-4.

[107]

Park M-J, Kim D-I, Lim S-K et al. High glucose-induced O-GlcNAcylated carbohydrate response element-binding protein (ChREBP) mediates mesangial cell lipogenesis and fibrosis. J Biol Chem 2014; 289: 13519-30. https://doi.org/10.1074/jbc.M113.530139.

[108]

Palmer MB, Abedini A, Jackson C et al. The role of glomerular epithelial injury in kidney function decline in patients with dia-betic kidney disease in the TRIDENT cohort. Kidney International Reports 2021; 6: 1066-80. https://doi.org/10.1016/j.ekir.2021.01.025.

[109]

Suh HN, Lee YJ, Kim MO et al. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells. J Cell Physiol 2014; 229: 1557-68. https://doi.org/10.1002/jcp.24599.

[110]

Goldberg H, Whiteside C, Fantus IG. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glu-cose in glomerular mesangial cells. Am J Physiol Endocrinol Metab 2011; 301: E713-26. https://doi.org/10.1152/ajpendo.00108.2011.

[111]

Kim KK, Sheppard D, Chapman HA. TGF-β1 signaling and tis-sue fibrosis. Cold Spring Harb Perspect Biol 2018; 10: a022293. https://doi.org/10.1101/cshperspect.a022293.

[112]

Morrow GB, Mutch NJ. Past,present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1). Semin Thromb Hemost 2023; 49: 305-13. https://doi.org/10.1055/s-0042-1758791.

[113]

Goldberg HJ, Whiteside CI, Hart GW et al. Posttranslational, reversible O-glycosylation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. Endocrinology 2006; 147: 222-31. https://doi.org/10.1210/en.2005-0523.

[114]

Masson E, Wiernsperger N, Lagarde M et al. Glucosamine in-duces cell-cycle arrest and hypertrophy of mesangial cells: implication of gangliosides. Biochem J 2005; 388: 537-44. https://doi.org/10.1042/bj20041506.

[115]

Masson E, Lagarde M, Wiernsperger N et al. Hyperglycemia and glucosamine-induced mesangial cell cycle arrest and hy-pertrophy: common or independent mechanisms? IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) 2006; 58: 381-8. https://doi.org/10.1080/15216540600755980.

[116]

Costa R, Remigante A, Civello DA et al. O-GlcNAcylation sup-presses the ion current IClswell by preventing the binding of the protein ICln to α-integrin. Front Cell Dev Biol 2020; 8: 607080. https://doi.org/10.3389/fcell.2020.607080.

[117]

Yang YR, Kim DH, Seo Y-K et al. Elevated O-GlcNAcylation pro-motes colonic inflammation and tumorigenesis by modulating NF-κb signaling. Oncotarget 2015; 6: 12529-42. https://doi.org/10.18632/oncotarget.3725.

[118]

Yang WH, Park SY, Nam HW et al. NFkappaB activation is as-sociated with its O-GlcNAcylation state under hyperglycemic conditions. Proc Natl Acad Sci 2008; 105: 17345-50. https://doi.org/10.1073/pnas.0806198105.

[119]

Feng D, Sheng-Dong L, Tong W et al. O-GlcNAcylation of RAF1 increases its stabilization and induces the renal fi-brosis. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease 2020; 1866: 165556. https://doi.org/10.1016/j.bbadis.2019.165556.

[120]

Park SY, Kim HS, Kim NH et al. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J 2010; 29: 3787-96. https://doi.org/10.1038/emboj.2010.254.

[121]

Hsieh T-J, Fustier P, Zhang S-L et al. High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology 2003; 144: 4338-49. https://doi.org/10.1210/en.2003-0220.

[122]

Gellai R, Hodrea J, Lenart L et al. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Am J Physiol Renal Physiol 2016; 311: F1172-81. https://doi.org/10.1152/ajprenal.00545.2015.

[123]

Uchida S, Endou H. Substrate specificity to maintain cellu-lar ATP along the mouse nephron. Am J Physiol Renal Physiol 1988; 255: F977-83. https://doi.org/10.1152/ajprenal.1988.255.5.F977.

[124]

Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 2002; 3: 258-67. https://doi.org/10.1038/nrm778.

[125]

Peruchetti DdB, Silva-Aguiar RP, Siqueira GM et al. High glucose reduces megalin-mediated albumin endocytosis in renal prox-imal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem 2018; 293: 11388-400. https://doi.org/10.1074/jbc.RA117.001337.

[126]

Ben Ahmed A, Lemaire Q, Scache J et al. O-GlcNAc dynamics: the sweet side of protein trafficking regulation in mammalian cells. Cells 2023; 12: 1396. https://doi.org/10.3390/cells12101396.

[127]

Silva-Aguiar RP, Bezerra NCF, Lucena MC et al. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem 2018; 293: 12749-58. https://doi.org/10.1074/jbc.RA118.001746.

[128]

Chen C-H, Lin K-D, Ke L-Y et al. O-GlcNAcylation disrupts STRA6-retinol signals in kidneys of diabetes. Biochimica et Bio-physica Acta (BBA)—General Subjects 2019; 1863: 1059-69. https://doi.org/10.1016/j.bbagen.2019.03.014.

[129]

Sugahara S, Kume S, Chin-Kanasaki M et al. Protein O-GlcNAcylation is essential for the maintenance of renal energy homeostasis and function via lipolysis during fasting and dia-betes. J Am Soc Nephrol 2019; 30: 962-78. https://doi.org/10.1681/asn.2018090950.

[130]

Podgórski P, Konieczny A, Lis Ł et al. Glomerular podocytes in diabetic renal disease. Advances in Clinical and Experimen-tal Medicine 2019; 28: 1711-5. https://doi.org/10.17219/acem/104534.

[131]

Ono S, Kume S, Yasuda-Yamahara M et al. O-linked β-N-acetylglucosamine modification of proteins is essential for foot process maturation and survival in podocytes. Nephrol Dial Transplant 2017; 32: 1477-87. https://doi.org/10.1093/ndt/gfw463.

[132]

Zou Y, Zhuo M, Chen W et al. Multiomics analysis of O-GlcNAcylation in podocytes of diabetic kidney disease. Diabetes Obes Metab 2025; 27: 2708-19. https://doi.org/10.1111/dom.16274.

[133]

Akimoto Y, Yan K, Miura Y et al. O-GlcNAcylation and phospho-rylation of β-actin ser(199) in diabetic nephropathy. Am J Physiol Renal Physiol 2019; 317: F1359-74. https://doi.org/10.1152/ajprenal.00566.2018.

[134]

Na J, Sweetwyne MT, Park AS et al. Diet-induced podocyte dys-function in drosophila and mammals. Cell Rep 2015; 12: 636-47. https://doi.org/10.1016/j.celrep.2015.06.056.

[135]

Pohl M. Henoch-Schönlein purpura nephritis. Pediatr Nephrol 2015; 30: 245-52. https://doi.org/10.1007/s00467-014-2815-6.

[136]

Xu L, Li Y, Wu X. IgA vasculitis update: epidemiology, patho-genesis, and biomarkers. Front Immunol 2022; 13: 921864. https://doi.org/10.3389/fimmu.2022.921864.

[137]

Tang M, Zhang X, Li X et al. Serum levels of galactose-deficient IgA1 in Chinese children with IgA nephropathy, IgA vasculitis with nephritis, and IgA vasculitis. Clin Exp Nephrol 2021; 25: 37-43. https://doi.org/10.1007/s10157-020-01968-8.

[138]

Sugiyama M, Wada Y, Kanazawa N et al. A cross-sectional analysis of clinicopathologic similarities and differences be-tween Henoch-Schönlein purpura nephritis and IgA nephropa-thy. PLoS One 2020; 15: e0232194. https://doi.org/10.1371/journal.pone.0232194.

[139]

Zhang Q, Yan L, Chen M et al. IgA1 isolated from Henoch-Schönlein purpura children promotes proliferation of human mesangial cells in vitro. Cell Biol Int 2019; 43: 760-9. https://doi.org/10.1002/cbin.11142.

[140]

Neufeld M, Molyneux K, Pappelbaum KI et al. Galactose-deficient IgA1 in skin and serum from patients with skin-limited and systemic IgA vasculitis. J Am Acad Dermatol 2019; 81: 1078-85. https://doi.org/10.1016/j.jaad.2019.03.029.

[141]

Davin JC, Ten Berge IJ, Weening JJ. What is the difference between IgA nephropathy and Henoch-Schönlein purpura nephritis? Kidney Int 2001; 59: 823-34. https://doi.org/10.1046/j.1523-1755.2001.059003823.x.

[142]

Hua M-R, Zhao Y-L, Yang J-Z et al. Membranous nephropa-thy: mechanistic insights and therapeutic perspectives. Int Im-munopharmacol 2023; 120: 110317. https://doi.org/10.1016/j.intimp.2023.110317.

[143]

Beck LH, Bonegio RGB, Lambeau G et al. M-type phospholi-pase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009; 361: 11-21. https://doi.org/10.1056/NEJMoa0810457.

[144]

Haddad G, Lorenzen JM, Ma H et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J Clin Invest 2021; 131: e140453. https://doi.org/10.1172/jci140453.

[145]

Oskam N, Damelang T, Streutker M et al. Factors affect-ing IgG4-mediated complement activation. Front Immunol 2023; 14: 1087532. https://doi.org/10.3389/fimmu.2023.1087532.

[146]

Chinello C, de Haan N, Capitoli G et al. Definition of IgG subclass-specific glycopatterns in idiopathic membranous nephropathy: aberrant IgG glycoforms in blood. Int J Mol Sci 2022; 23: 4664. https://doi.org/10.3390/ijms23094664.

[147]

Li J-N, Cui Z, Wang J et al. Autoantibodies against linear epi-topes of myeloperoxidase in anti-glomerular basement mem-brane disease. Clinical Journal of the American Society of Nephrology 2016; 11: 568-75. https://doi.org/10.2215/cjn.05270515.

[148]

Yu J-T, Li J-N, Wang J et al. Deglycosylation of myeloperoxidase uncovers its novel antigenicity. Kidney Int 2017; 91: 1410-9. https://doi.org/10.1016/j.kint.2016.12.012.

[149]

Reiding KR, Franc V, Huitema MG et al. Neutrophil myeloper-oxidase harbors distinct site-specific peculiarities in its glyco-sylation. J Biol Chem 2019; 294: 20233-45. https://doi.org/10.1074/jbc.RA119.011098.

[150]

Xu P-C, Gou S-J, Yang X-W et al. Influence of variable do-main glycosylation on anti-neutrophil cytoplasmic autoanti-bodies and anti-glomerular basement membrane autoantibod-ies. BMC immunology 2012; 13: 10. https://doi.org/10.1186/1471-2172-13-10.

[151]

Kiriakidou M, Ching CL. Systemic Lupus Erythematosus. Ann Intern Med 2020; 172: ITC81-96. https://doi.org/10.7326/aitc202006020.

[152]

Bomback AS, Appel GB. Updates on the treatment of lupus nephritis. J Am Soc Nephrol 2010; 21: 2028-35. https://doi.org/10.1681/asn.2010050472.

[153]

Yu C, Li P, Dang X et al. Lupus nephritis: new progress in di-agnosis and treatment. J Autoimmun 2022; 132: 102871. https://doi.org/10.1016/j.jaut.2022.102871.

[154]

Lu X, Wang L, Wang M et al. Association between immunoglob-ulin G N-glycosylation and lupus nephritis in female patients with systemic lupus erythematosus: a case-control study. Front Immunol 2023; 14: 1257906. https://doi.org/10.3389/fimmu.2023.1257906.

[155]

Bhargava R, Lehoux S, Maeda K et al. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 2021; 6: e147789. https://doi.org/10.1172/jci.insight.147789.

[156]

Maeda K, Otomo K, Yoshida N et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kid-ney disease. J Clin Invest 2018; 128: 3445-59. https://doi.org/10.1172/jci99507.

[157]

Olivier-Van Stichelen S, Abramowitz LK, Hanover JA. X marks the spot: does it matter that O-GlcNAc transferase is an X-linked gene? Biochem Biophys Res Commun 2014; 453: 201-7. https://doi.org/10.1016/j.bbrc.2014.06.068.

[158]

Machacek M, Slawson C, Fields PE. O-GlcNAc: a novel regulator of immunometabolism. J Bioenerg Biomembr 2018; 50: 223-9. https://doi.org/10.1007/s10863-018-9744-1.

[159]

Sundararaj K, Rodgers J, Angel P et al. The role of neuraminidase in TLR4-MAPK signalling and the release of cytokines by lupus serum-stimulated mesangial cells. Immunology 2021; 162: 418-33. https://doi.org/10.1111/imm.13294.

[160]

Geetha D, Jefferson JA. ANCA-Associated Vasculitis: core cur-riculum 2020. Am J Kidney Dis 2020; 75: 124-37. https://doi.org/10.1053/j.ajkd.2019.04.031.

[161]

Kallenberg CG. Pathogenesis of ANCA-associated vasculitides. Ann Rheum Dis 2011; 70: i59-63. https://doi.org/10.1136/ard.2010.138024.

[162]

Lardinois OM, Deterding LJ, Hess JJ et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 2019; 14: e0213215. https://doi.org/10.1371/journal.pone.0213215.

[163]

Wuhrer M, Stavenhagen K, Koeleman CAM et al. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with Polyangiitis patients show low levels of bisection, galactosylation, and sialylation. J Proteome Res 2015; 14: 1657-65. https://doi.org/10.1021/pr500780a.

[164]

Espy C, Morelle W, Kavian N et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of gran-ulomatosis with polyangiitis (Wegener’s). Arthritis & Rheuma-tism 2011; 63: 2105-15. https://doi.org/10.1002/art.30362.

[165]

Wojcik I, Wuhrer M, Heeringa P et al. Specific IgG glycosyla-tion differences precede relapse in PR3-ANCA associated vas-culitis patients with and without ANCA rise. Front Immunol 2023; 14: 1214945. https://doi.org/10.3389/fimmu.2023.1214945.

[166]

Bergmann C, Guay-Woodford LM, Harris PC et al. Polycystic kid-ney disease. Nat Rev Dis Primers 2018; 4: 50. https://doi.org/10.1038/s41572-018-0047-y.

[167]

Su Q, Hu F, Ge X et al. Structure of the human PKD1-PKD2 com-plex. Science 2018; 361: eaat9819. https://doi.org/10.1126/science.aat9819.

[168]

Streets A, Ong A. Post-translational modifications of the poly-cystin proteins. Cell Signalling 2020; 72: 109644. https://doi.org/10.1016/j.cellsig.2020.109644.

[169]

Tannous A, Pisoni GB, Hebert DN et al. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 2015; 41: 79-89. https://doi.org/10.1016/j.semcdb.2014.12.001.

[170]

Newby LJ, Streets AJ, Zhao Y et al. Identification, charac-terization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 2002; 277: 20763-73. https://doi.org/10.1074/jbc.M107788200.

[171]

Vangeel L, Voets T. Transient receptor potential chan-nels and calcium signaling. Cold Spring Harb Perspect Biol 2019; 11: a035048. https://doi.org/10.1101/cshperspect.a035048.

[172]

Anyatonwu GI, Ehrlich BE. Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 2005; 280: 29488-93. https://doi.org/10.1074/jbc.M504359200.

[173]

Hofherr A, Wagner C, Fedeles S et al. N-glycosylation deter-mines the abundance of the transient receptor potential chan-nel TRPP2. J Biol Chem 2014; 289: 14854-67. https://doi.org/10.1074/jbc.M114.562264.

[174]

Hopp K, Ward CJ, Hommerding CJ et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 2012; 122: 4257-73. https://doi.org/10.1172/jci64313.

[175]

Leeuwen ISL-V, Dauwerse JG, Baelde HJ et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 2004; 13: 3069-77. https://doi.org/10.1093/hmg/ddh336.

[176]

Nauli SM, Alenghat FJ, Luo Y et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33: 129-37. https://doi.org/10.1038/ng1076.

[177]

Tomilin V, Reif GA, Zaika O et al. Deficient transient recep-tor potential vanilloid type 4 function contributes to compro-mised [Ca(2 +)](i) homeostasis in human autosomal-dominant polycystic kidney disease cells. FASEB J 2018; 32: 4612-23. https://doi.org/10.1096/fj.201701535RR.

[178]

Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002; 13: 2508-16. https://doi.org/10.1097/01.asn.0000029587.47950.25.

[179]

Hu J, Harris PC. Regulation of polycystin expression, matura-tion and trafficking. Cell Signalling 2020; 72: 109630. https://doi.org/10.1016/j.cellsig.2020.109630.

[180]

Chapin HC, Rajendran V, Caplan MJ. Polycystin-1 surface localization is stimulated by polycystin-2 and cleavage at the G protein-coupled receptor proteolytic site. Mol Biol Cell 2010; 21: 4338-48. https://doi.org/10.1091/mbc.E10-05-0407.

[181]

Mahboobipour AA, Ala M, Safdari Lord J et al. Clinical mani-festation, epidemiology, genetic basis, potential molecular tar-gets, and current treatment of polycystic liver disease. Orphanet J Rare Dis 2024; 19: 175. https://doi.org/10.1186/s13023-024-03187-w.

[182]

Porath B, Gainullin VG, Cornec-Le Gall E et al. Mutations in GANAB, encoding the glucosidase ii αsubunit, cause autosomal-dominant polycystic kidney and liver disease. Am Hum Genet 2016; 98: 1193-207. https://doi.org/10.1016/j.ajhg.2016.05.004.

[183]

Cornec-Le Gall E, Olson RJ, Besse W et al. Monoallelic muta-tions to DNAJB11 cause Atypical autosomal-dominant poly-cystic kidney disease. Am Hum Genet 2018; 102: 832-44. https://doi.org/10.1016/j.ajhg.2018.03.013.

[184]

Lemoine H, Raud L, Foulquier F et al. Monoallelic pathogenic ALG5 variants cause atypical polycystic kidney disease and in-terstitial fibrosis. Am Hum Genet 2022; 109: 1484-99. https://doi.org/10.1016/j.ajhg.2022.06.013.

[185]

Elhassan EAE, Kmochová T, Benson KA et al. A novel monoal-lelic ALG5 variant causing late-onset ADPKD and tubulointer-stitial fibrosis. Kidney International Reports 2024; 9: 2209-26. https://doi.org/10.1016/j.ekir.2024.04.031.

[186]

Besse W, Chang AR, Luo JZ et al. ALG9 Mutation carriers develop kidney and liver cysts. J Am Soc Nephrol 2019; 30: 2091-102. https://doi.org/10.1681/asn.2019030298.

[187]

Bucci R, Tunesi F, De Rosa LI et al. Congenital solitary kidney in autosomal dominant polycystic kidney disease: where do known genes end and the unknown begin? Clinical Case Reports 2023; 11: e7917. https://doi.org/10.1002/ccr3.7917.

[188]

H. Kathem S, M. Mohieldin A, M. Nauli S. The roles of pri-mary cilia in polycystic kidney disease. AIMS molecular science 2013; 1: 27-46. https://doi.org/10.3934/molsci.2013.1.27.

[189]

Wang W, Silva LM, Wang HH et al. Ttc21b deficiency attenu-ates autosomal dominant polycystic kidney disease in a kid-ney tubular-and maturation-dependent manner. Kidney Int 2022; 102: 577-91. https://doi.org/10.1016/j.kint.2022.04.034.

[190]

Gallagher AR, Germino GG, Somlo S. Molecular advances in au-tosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010; 17: 118-30. https://doi.org/10.1053/j.ackd.2010.01.002.

[191]

Zhang AF, Wu S-L, Jung Y et al. Identification of novel glycans with disialylated structures in α3 integrin from mouse kidney cells with the phenotype of polycystic kidney disease. J Proteome Res 2014; 13: 4901-9. https://doi.org/10.1021/pr5009702.

[192]

Bahadoram S, Davoodi M, Hassanzadeh S et al. Renal cell car-cinoma: an overview of the epidemiology, diagnosis, and treat-ment. G Ital Nefrol 2022; 39: 2022-vol3.

[193]

Wolf MM, Kimryn Rathmell W, Beckermann KE. Modeling clear cell renal cell carcinoma and therapeutic implications. Onco-gene 2020; 39: 3413-26. https://doi.org/10.1038/s41388-020-1234-3.

[194]

Protzel C, Maruschke M, Hakenberg OW. Epidemiology, aetiol-ogy, and pathogenesis of renal cell carcinoma. European Urology Supplements 2012; 11: 52-9. https://doi.org/10.1016/j.eursup.2012.05.002.

[195]

Gbormittah FO, Lee LY, Taylor K et al. Comparative studies of the proteome, glycoproteome, and N-glycome of clear cell renal cell carcinoma plasma before and after curative nephrectomy. J Proteome Res 2014; 13: 4889-900. https://doi.org/10.1021/pr500591e.

[196]

Meng L, Xu L, Yang Y et al. High expression of FUT3 is linked to poor prognosis in clear cell renal cell carcinoma. Oncotarget 2017; 8: 61036-47. https://doi.org/10.18632/oncotarget.17717.

[197]

D˛abrowska A, Baczyńska D, Widerak K et al. Promoter analy-sis of the human alpha1,3/4-fucosyltransferase gene (FUT III). Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression 2005; 1731: 66-73. https://doi.org/10.1016/j.bbaexp.2005.08.009.

[198]

Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 2011; 286: 22982-90. https://doi.org/10.1074/jbc.M110.211375.

[199]

Reis CA. ST6GalNAc-I controls expression of sialyl-tn antigen in gastrointestinal tissues. Front Biosci 2011; E3: 1443-55. https://doi.org/10.2741/e345.

[200]

Bai Q, Liu L, Xia Y et al. Prognostic significance of ST3GAL-1 expression in patients with clear cell renal cell carcinoma. BMC Cancer 2015; 15: 880. https://doi.org/10.1186/s12885-015-1906-5.

[201]

Pan Y, Hu J, Ma J et al. MiR-193a-3p and miR-224 medi-ate renal cell carcinoma progression by targeting alpha-2,3-sialyltransferase IV and the phosphatidylinositol 3 kinase/akt pathway. Mol Carcinog 2018; 57: 1067-77. https://doi.org/10.1002/mc.22826.

[202]

Pan Y, Wu Y, Hu J et al. Long noncoding RNA HO-TAIR promotes renal cell carcinoma malignancy through alpha-2, 8-sialyltransferase 4 by sponging microRNA-124. Cell Prolif 2018; 51: e12507. https://doi.org/10.1111/cpr.12507.

[203]

Zhu T-Y, Chen H-L, Gu J-X et al. Changes in N-acetylglucosaminyltransferase III, IV and V in renal cell carcinoma. J Cancer Res Clin Oncol 1997; 123: 296-9. https://doi.org/10.1007/bf01208642.

[204]

Yi H, Liu L, Zhang J et al. GALNT2 targeted by miR-139-5p pro-motes proliferation of clear cell renal cell carcinoma via inhi-bition of LATS2 activation. Discover oncology 2024; 15: 73. https://doi.org/10.1007/s12672-024-00930-4.

[205]

Miwa HE, Song Y, Alvarez R et al. The bisecting GlcNAc in cell growth control and tumor progression. Glycoconjugate J 2012; 29: 609-18. https://doi.org/10.1007/s10719-012-9373-6.

[206]

Lin L, Zhong K, Sun Z et al. Receptor for advanced glycation end products (RAGE) partially mediates HMGB1-ERKs activa-tion in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2012; 138: 11-22. https://doi.org/10.1007/s00432-011-1067-0.

[207]

Li H, Zhang T, Zhang Y et al. Prognostic value of CD147 and HIF-2 αexpression in localized clear cell renal cell carcinoma. Inter-national Journal of Clinical and Experimental Pathology 2016; 9: 9394-400.

[208]

Li W, Wang D, Ge Y et al. Discovery and biological evaluation of CD147 N-glycan inhibitors: A new direction in the treatment of tumor metastasis. Molecules 2020; 26: 33. https://doi.org/10.3390/molecules26010033.

[209]

Zhang Y, Chen M, Liu M et al. Glycolysis-related genes serve as potential prognostic biomarkers in clear cell renal cell carci-noma. Oxid Med Cell Long 2021; 2021: 6699808. https://doi.org/10.1155/2021/6699808.

[210]

Tang S-W, Chang W-H, Su Y-C et al. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett 2009; 273: 35-43. https://doi.org/10.1016/j.canlet.2008.07.038.

[211]

Drake RR, McDowell C, West C et al. Defining the human kidney N-glycome in normal and cancer tissues using MALDI imaging mass spectrometry. J Mass Spectrom 2020; 55: e4490. https://doi.org/10.1002/jms.4490.

[212]

Lih TM, Cho KC, Schnaubelt M et al. Integrated glycoproteomic characterization of clear cell renal cell carcinoma. Cell Rep 2023; 42: 112409. https://doi.org/10.1016/j.celrep.2023.112409.

[213]

Padró M, Cobler L, Garrido M et al. Down-regulation of FUT3 and FUT5 by shRNA alters lewis antigens expression and re-duces the adhesion capacities of gastric cancer cells. Biochim-ica et Biophysica Acta (BBA)—General Subjects 2011; 1810: 1141-9. https://doi.org/10.1016/j.bbagen.2011.09.011.

[214]

Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi M-A et al. The human sialyltransferase family. Biochimie 2001; 83: 727-37. https://doi.org/10.1016/s0300-9084(01)01301-3.

[215]

Audry M, Jeanneau C, Imberty A et al. Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 2011; 21: 716-26. https://doi.org/10.1093/glycob/cwq189.

[216]

Liu Z, Swindall AF, Kesterson RA et al. ST6Gal-I regulates macrophage apoptosis via α2-6 sialylation of the TNFR1 death receptor. J Biol Chem 2011; 286: 39654-62. https://doi.org/10.1074/jbc.M111.276063.

[217]

Dennis JW, Laferté S, Waghorne C et al. Beta 1-6 branching of asn-linked oligosaccharides is directly associated with metas-tasis. Science 1987; 236: 582-5. https://doi.org/10.1126/science.2953071.

[218]

Demetriou M, Granovsky M, Quaggin S et al. Negative reg-ulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 2001; 409: 733-9. https://doi.org/10.1038/35055582.

[219]

Zhu X, Al-Danakh A, Zhang L et al. Glycosylation in renal cell carcinoma: mechanisms and clinical implications. Cells 2022; 11: 2598. https://doi.org/10.3390/cells11162598.

[220]

Du T, Jia X, Dong X et al. Cosmc disruption-mediated aberrant O-glycosylation suppresses breast cancer cell growth via im-pairment of CD44. Cancer Management and Research 2020; 12: 511-22. https://doi.org/10.2147/cmar.S234735.

[221]

Cornelissen LAM, Blanas A, Zaal A et al. Tn antigen expres-sion contributes to an immune suppressive microenviron-ment and drives tumor growth in colorectal cancer. Front Oncol 2020; 10: 1622. https://doi.org/10.3389/fonc.2020.01622.

[222]

Sun L, Li Z, Shu P et al. N-acetylgalactosaminyltransferase GALNT6 is a potential therapeutic target of clear cell renal cell carcinoma progression. Cancer Sci 2024; 115: 3320-32. https://doi.org/10.1111/cas.16296.

[223]

Bai Q, Liu L, Xi W et al. Prognostic significance of ST6GalNAc-1 expression in patients with non-metastatic clear cell renal cell carcinoma. Oncotarget 2018; 9: 3112-20. https://doi.org/10.18632/oncotarget.11258.

[224]

Lakshmanan I, Chaudhary S, Vengoji R et al. ST6GalNAc-I pro-motes lung cancer metastasis by altering MUC5AC sialylation. Molecular oncology 2021; 15: 1866-81. https://doi.org/10.1002/1878-0261.12956.

[225]

Aubert Sé, Fauquette Valé, Hémon B et al. MUC1, a new hy-poxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res 2009; 69: 5707-15. https://doi.org/10.1158/0008-5472.Can-08-4905.

[226]

Jonckheere N, Van Seuningen I. The membrane-bound mucins: from cell signalling to transcriptional regulation and expres-sion in epithelial cancers. Biochimie 2010; 92: 1-11. https://doi.org/10.1016/j.biochi.2009.09.018.

[227]

Xu Z, Liu Y, Yang Y et al. High expression of Mucin13 associates with grimmer postoperative prognosis of pa-tients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2017; 8: 7548-58. https://doi.org/10.18632/oncotarget.13692.

[228]

Niu T, Liu Y, Zhang Y et al. Increased expression of MUC3A is associated with poor prognosis in localized clear-cell renal cell carcinoma. Oncotarget 2016; 7: 50017-26. https://doi.org/10.18632/oncotarget.10312.

[229]

Kondo Y, Okajima T. Inhibitory machinery for the func-tional dystroglycan glycosylation. The Journal of Biochemistry 2023; 173: 333-5. https://doi.org/10.1093/jb/mvad003.

[230]

Liu X, Wang J, Xiang Y et al. The roles of OGT and its mecha-nisms in cancer. Cell & bioscience 2024; 14: 121. https://doi.org/10.1186/s13578-024-01301-w.

[231]

Fardini Y, Dehennaut V, Lefebvre T et al. O-GlcNAcylation: A new cancer hallmark? Frontiers in Endocrinology 2013; 4: 99. https://doi.org/10.3389/fendo.2013.00099.

[232]

Wang L, Chen S, Zhang J et al. Suppressed OGT expres-sion inhibits cell proliferation and modulates EGFR expres-sion in renal cell carcinoma. Cancer Management and Research 2019; 11: 2215-23. https://doi.org/10.2147/cmar.S190642.

[233]

Yang Z, Wei X, Ji C et al. OGT/HIF-2 αaxis promotes the progres-sion of clear cell renal cell carcinoma and regulates its sensi-tivity to ferroptosis. iScience 2023; 26: 108148. https://doi.org/10.1016/j.isci.2023.108148.

[234]

Seaayfan E, Defontaine N, Demaretz S et al. OS9 Protein in-teracts with Na-K-2Cl Co-transporter (NKCC2) and targets its immature form for the endoplasmic reticulum-associated degradation pathway. J Biol Chem 2016; 291: 4487-502. https://doi.org/10.1074/jbc.M115.702514.

[235]

Park J, Lee S-Y, Ooshima A et al. Glucosamine hydrochloride ex-erts a protective effect against unilateral ureteral obstruction-induced renal fibrosis by attenuating TGF-βsignaling. J Mol Med 2013; 91: 1273-84. https://doi.org/10.1007/s00109-013-1086-1.

[236]

Chen H-F, Kao C-C, Ka S-M et al. Development of an enrichment-free one-pot sample preparation and ultra-high performance liquid chromatography-tandem mass spectrom-etry method to identify immunoglobulin A1 hinge region O-glycoforms for immunoglobulin A nephropathy. J Chromatogr A 2022; 1685: 463589. https://doi.org/10.1016/j.chroma.2022.463589.

[237]

Yanagawa H, Suzuki H, Suzuki Y et al. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS One 2014; 9: e98081. https://doi.org/10.1371/journal.pone.0098081.

[238]

Zhang S, Sun H, Zhang Z et al. Diagnostic potential of plasma IgA1 O-glycans in discriminating IgA nephropathy from other glomerular diseases and healthy participants. Front Mol Biosci 2022; 9: 871615. https://doi.org/10.3389/fmolb.2022.871615.

[239]

Lin T, Chen Z, Luo M et al. Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine. Analyst 2023; 148: 5041-9. https://doi.org/10.1039/d3an01018j.

[240]

Zhu H, Liu M, Yu H et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. J Diabetes Res 2017; 2017: 1-14. https://doi.org/10.1155/2017/5728087.

[241]

Inoue K, Wada J, Eguchi J et al. Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One 2013; 8: e77118. https://doi.org/10.1371/journal.pone.0077118.

[242]

Koska J, Gerstein HC, Beisswenger PJ et al. Advanced glyca-tion end products predict loss of renal function and high-risk chronic kidney disease in type 2 diabetes. Diabetes Care 2022; 45: 684-91. https://doi.org/10.2337/dc21-2196.

[243]

Alves I, Santos-Pereira B, Dalebout H et al. Protein mannosyla-tion as a diagnostic and prognostic biomarker of Lupus nephri-tis: an unusual glycan neoepitope in systemic Lupus erythe-matosus. Arthritis & Rheumatology (Hoboken, N.J.) 2021; 73: 2069-77. https://doi.org/10.1002/art.41768.

[244]

Wolf B, Blaschke CRK, Mungaray S et al. Metabolic markers and Association of biological sex in Lupus Nephritis. Int J Mol Sci 2023; 24: 16490. https://doi.org/10.3390/ijms242216490.

[245]

Lu X, Wang L, Wang M et al. Association between immunoglob-ulin G N-glycosylation and lupus nephritis in female patients with systemic lupus erythematosus: a case-control study. Front Immunol 2023; 14: 1257906. https://doi.org/10.3389/fimmu.2023.1257906.

[246]

Jeong HJ, Shin SJ, Lim BJ. Overview of IgG4-related tubuloin-terstitial nephritis and its mimickers. Journal of pathology and translational medicine 2016; 50: 26-36. https://doi.org/10.4132/jptm.2015.11.09.

[247]

Ren S, Zhang Z, Xu C et al. Distribution of IgG galactosylation as a promising biomarker for cancer screening in multiple can-cer types. Cell Res 2016; 26: 963-6. https://doi.org/10.1038/cr.2016.83.

[248]

Serie DJ, Myers AA, Haehn DA et al. Novel plasma glycoprotein biomarkers predict progression-free survival in surgically re-sected clear cell renal cell carcinoma. Urol Oncol 2022; 40: 168. https://doi.org/10.1016/j.urolonc.2021.12.005.

[249]

Sun Q, Zhang Z, Zhang H et al. Aberrant IgA1 glycosy-lation in IgA nephropathy: A systematic review. PLoS One 2016; 11: e0166700.https://doi.org/10.1371/journal.pone.0166700.

[250]

Dotz V, Visconti A, Lomax-Browne HJ et al. O-and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J Am Soc Nephrol 2021; 32: 2455-65. https://doi.org/10.1681/asn.2020081208.

[251]

Yang N, Li L-K, He H et al. Positive association of serum FUT8 activity with renal tubulointerstitial injury in IgA nephropathy patients. Immunity, inflammation and disease 2022; 10: e686. https://doi.org/10.1002/iid3.686.

[252]

Serino G, Pesce F, Sallustio F et al. In a retrospective interna-tional study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int 2016; 89: 683-92. https://doi.org/10.1038/ki.2015.333.

[253]

Lamm ME, Emancipator SN, Robinson JK et al. Microbial IgA protease removes IgA immune complexes from mouse glomeruli in vivo: potential therapy for IgA nephropathy. Am J Pathol 2008; 172: 31-6. https://doi.org/10.2353/ajpath.2008.070131.

[254]

Lechner SM, Abbad L, Boedec E et al. IgA1 Protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J Am Soc Nephrol 2016; 27: 2622-9. https://doi.org/10.1681/asn.2015080856.

[255]

Xie LS, Huang J, Qin W et al. Immunoglobulin A1 protease: a new therapeutic candidate for immunoglobulin A nephropa-thy. Nephrology 2010; 15: 584-6. https://doi.org/10.1111/j.1440-1797.2010.01278.x.

[256]

Coppo R, Camilla R, Alfarano A et al. Upregulation of the im-munoproteasome in peripheral blood mononuclear cells of pa-tients with IgA nephropathy. Kidney Int 2009; 75: 536-41. https://doi.org/10.1038/ki.2008.579.

[257]

Serino G, Sallustio F, Curci C et al. Role of let-7b in the regula-tion of N-acetylgalactosaminyltransferase 2 in IgA nephropa-thy. Nephrol Dial Transplant 2015; 30: 1132-9. https://doi.org/10.1093/ndt/gfv032.

[258]

Lee M, Suzuki H, Ogiwara K et al. The nucleotide-sensing toll-like receptor 9/toll-Like Receptor 7 system is a potential ther-apeutic target for IgA nephropathy. Kidney Int 2023; 104: 943-55. https://doi.org/10.1016/j.kint.2023.08.013.

[259]

Memarian E, ’t Hart LM, Slieker RC et al. Plasma protein N-glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes. BMJ open dia-betes research & care 2021; 9: e002345. https://doi.org/10.1136/bmjdrc-2021-002345.

[260]

Guo Z, Liu X, Li M et al. Differential urinary glycoproteome anal-ysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med 2015; 13: 371. https://doi.org/10.1186/s12967-015-0712-9.

[261]

Ho CN, Ayers AT, Beisswenger P et al. Advanced Glycation End Products (AGEs) Webinar Meeting Report. Journal of diabetes sci-ence and technology 2025; 19: 576-81. https://doi.org/10.1177/19322968241296541.

[262]

Guo M, He F, Zhang C. Molecular therapeutics for diabetic kidney disease: an update. Int J Mol Sci 2024; 25: 10051. https://doi.org/10.3390/ijms251810051.

[263]

Xu L, Zhou Y, Wang G et al. The UDPase ENTPD5 regulates ER stress-associated renal injury by mediating protein N-glycosylation. Cell Death Dis 2023; 14: 166. https://doi.org/10.1038/s41419-023-05685-4.

[264]

Degrell P, Cseh J, Mohás M et al. Evidence of O-linked N-acetylglucosamine in diabetic nephropathy. Life Sci 2009; 84: 389-93. https://doi.org/10.1016/j.lfs.2009.01.007.

[265]

Yu A, Zhao J, Zhong J et al. Altered O-glycomes of renal brush-border membrane in model rats with chronic kidney diseases. Biomolecules 2021; 11: 1560. https://doi.org/10.3390/biom11111560.

[266]

Wu M, Li S, Yu X et al. Mitochondrial activity contributes to impaired renal metabolic homeostasis and renal pathol-ogy in STZ-induced diabetic mice. Am J Physiol Renal Physiol 2019; 317: F593-605. https://doi.org/10.1152/ajprenal.00076.2019.

[267]

Hodrea J, Balogh DB, Hosszu A et al. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am J Phys-iol Renal Physiol 2020; 318: F1017-29. https://doi.org/10.1152/ajprenal.00021.2020.

[268]

Otomo H, Nara M, Kato S et al. Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive di-abetic nephropathy. Metabolism 2020; 113: 154405. https://doi.org/10.1016/j.metabol.2020.154405.

[269]

Melhem MF, Craven PA, Derubertis FR. Effects of dietary sup-plementation of alpha-lipoic acid on early glomerular injury in diabetes mellitus. J Am Soc Nephrol 2001; 12: 124-33. https://doi.org/10.1681/asn.V121124.

[270]

Arambašić J, Mihailović M, Uskoković A et al. Alpha-lipoic acid upregulates antioxidant enzyme gene expression and enzy-matic activity in diabetic rat kidneys through an O-GlcNAc-dependent mechanism. Eur J Nutr 2013; 52: 1461-73. https://doi.org/10.1007/s00394-012-0452-z.

[271]

Song S, Hu T, Shi X et al. ER stress-perturbed intracellular pro-tein O-GlcNAcylation aggravates podocyte injury in diabetes nephropathy. Int J Mol Sci 2023; 24: 17603. https://doi.org/10.3390/ijms242417603.

[272]

CAO Y, HAO Y, LI H et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med 2014; 33: 809-16. https://doi.org/10.3892/ijmm.2014.1642.

[273]

Zheng JM, Zhu JM, Li LS et al. Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT1) by inhibiting the hexosamine pathway. Br J Pharmacol 2008; 153: 1456-64. https://doi.org/10.1038/bjp.2008.26.

[274]

Jovanović JA, Mihailović M, Uskoković AS et al. Evaluation of the antioxidant and antiglycation effects of Lactarius de-terrimus and Castanea sativa extracts on hepatorenal in-jury in streptozotocin-induced diabetic rats. Front Pharmacol 2017; 8: 793. https://doi.org/10.3389/fphar.2017.00793.

[275]

Wang N, Deng Y, Liu A et al. Novel mechanism of the pericyte-myofibroblast transition in renal interstitial fibrosis: core fuco-sylation regulation. Sci Rep 2017; 7: 16914. https://doi.org/10.1038/s41598-017-17193-5.

[276]

Fang M, Kang L, Wang X et al. Inhibition of core fucosylation limits progression of diabetic kidney disease. Biochem Biophys Res Commun 2019; 520: 612-8. https://doi.org/10.1016/j.bbrc.2019.10.037.

[277]

Shen N, Lin H, Wu T et al. Inhibition of TGF-β1-receptor post-translational core fucosylation attenuates rat renal interstitial fibrosis. Kidney Int 2013; 84: 64-77. https://doi.org/10.1038/ki.2013.82.

[278]

Singer E, Markó L, Paragas N et al. Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiologica 2013; 207: 663-72. https://doi.org/10.1111/apha.12054.

[279]

Liou LB, Chen CC, Chiang WY et al. De-sialylated and sialylated IgG anti-dsDNA antibodies respectively worsen and mitigate experimental mouse lupus proteinuria and possible mecha-nisms. Int Immunopharmacol 2022; 109: 108837. https://doi.org/10.1016/j.intimp.2022.108837.

[280]

Bhargava R, Upadhyay R, Wenderfer S et al. The ‘sweet’ in Lupus—IgG glycosylation in Lupus nephritis. Arthritis & Rheumatology 2023; 75: 1846-7.

[281]

Powles T, Albiges L, Bex A et al. Renal cell carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2024; 35: 692-706. https://doi.org/10.1016/j.annonc.2024.05.537.

[282]

Chen S, Song D, Chen L et al. Artificial intelligence-based non-invasive tumor segmentation, grade stratification and progno-sis prediction for clear-cell renal-cell carcinoma. Precision Clin-ical Medicine 2023; 6: pbad019. https://doi.org/10.1093/pcmedi/pbad019.

[283]

Vlachostergios PJ, Karathanasis A, Dimitropoulos K et al. High PSMA expression is associated with immunosuppressive tumor microenvironment in clear cell renal cell carcinoma. Precision Clinical Medicine 2024; 7: pbae010. https://doi.org/10.1093/pcmedi/pbae010.

[284]

Gbormittah FO, Bones J, Hincapie M et al. Clusterin glycopeptide variant characterization reveals significant site-specific glycan changes in the plasma of clear cell renal cell carcinoma. J Pro-teome Res 2015; 14: 2425-36. https://doi.org/10.1021/pr501104j.

[285]

Hatakeyama S, Amano M, Tobisawa Y et al. Serum N-glycan alteration associated with renal cell carcinoma detected by high throughput glycan analysis. J Urol 2014; 191: 805-13. https://doi.org/10.1016/j.juro.2013.10.052.

[286]

Santorelli L, Capitoli G, Chinello C et al. In-depth mapping of the urinary N-glycoproteome: distinct signatures of ccRCC-related progression. Cancers 2020; 12: 239. https://doi.org/10.3390/cancers12010239.

[287]

Zodro , Jaroszewski M, Ida A et al. FUT11 as a poten-tial biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data. Tumor Biology 2014; 35: 2607-17. https://doi.org/10.1007/s13277-013-1344-4.

[288]

Borzym-Kluczyk M, Radziejewska I. Changes of the expression of Lewis blood group antigens in glycoproteins of renal cancer tissues. Acta Biochim Pol 2013; 60: 223-6. https://doi.org/10.18388/abp.2013_1975.

[289]

Bermingham ML, Colombo M, McGurnaghan SJ et al. N-glycan profile and kidney disease in type 1 diabetes. Diabetes Care 2018; 41: 79-87. https://doi.org/10.2337/dc17-1042.

[290]

Okubo S, Wildner O, Shah MR et al. Gene transfer of heat-shock protein 70 reduces infarct size in vivo af-ter ischemia/reperfusion in the rabbit heart. Circulation 2001; 103: 877-81. https://doi.org/10.1161/01.cir.103.6.877.

[291]

Peng W, Zhang Y, Zheng M et al. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 2010; 106: 102-10. https://doi.org/10.1161/circresaha.109.210914.

[292]

Ngoh GA, Hamid T, Prabhu SD et al. O-GlcNAc signaling atten-uates ER stress-induced cardiomyocyte death. American Journal of Physiology-Heart and Circulatory Physiology 2009; 297: H1711-9. https://doi.org/10.1152/ajpheart.00553.2009.

[293]

Fülöp N, Zhang Z, Marchase RB et al. Glucosamine cardiopro-tection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. American Journal of Physiology-Heart and Circula-tory Physiology 2007; 292: H2227-36. https://doi.org/10.1152/ajpheart.01091.2006.

[294]

Yao D, Taguchi T, Matsumura T et al. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 2007; 282: 31038-45. https://doi.org/10.1074/jbc.M704703200.

[295]

Singh SS, Heijmans R, Meulen CKE et al. Association of the IgG N-glycome with the course of kidney function in type 2 dia-betes. BMJ Open Diabetes Research & Care 2020; 8: e001026. https://doi.org/10.1136/bmjdrc-2019-001026.

[296]

Turgut F, Awad A, Abdel-Rahman E. Acute kidney injury: med-ical causes and pathogenesis. J Clin Med 2023; 12: 375. https://doi.org/10.3390/jcm12010375.

[297]

Hu J, Chen R, Jia P et al. Augmented O-GlcNAc signaling via glu-cosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats. Free Radical Biol Med 2017; 103: 121-32. https://doi.org/10.1016/j.freeradbiomed.2016.12.032.

[298]

Hu J, Wang Y, Zhao S et al. Remote ischemic precondition-ing ameliorates acute kidney injury due to contrast expo-sure in rats through augmented O-GlcNAcylation. Oxid Med Cell Long 2018; 2018: 4895913. https://doi.org/10.1155/2018/4895913.

[299]

Agarwal A, Zeng X, Li S et al. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors for adults with chronic kidney disease: a clinical practice guideline. BMJ 2024; 387: q2605. https://doi.org/10.1136/bmj.q2605.

[300]

Wu W, Fu Y, Li H et al. GALNT3 in ischemia-reperfusion injury of the kidney. J Am Soc Nephrol 2025; 36: 348-60. https://doi.org/10.1681/asn.0000000530.

[301]

Gong K, Xia M, Wang Y et al. Importance of glycosylation in the interaction of Tamm-Horsfall protein with collectin-11 and acute kidney injury. J Cell Mol Med 2020; 24: 3572-81. https://doi.org/10.1111/jcmm.15046.

AI Summary AI Mindmap
PDF (3031KB)

608

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/