Utilizing multimodal artificial intelligence to advance cardiovascular diseases

Xin-yue Yang , Yi-ming Li , Jian-yong Wang , Yu-heng Jia , Zhang Yi , Mao Chen

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (3) : pbaf016

PDF (2017KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (3) : pbaf016 DOI: 10.1093/pcmedi/pbaf016
Review
research-article

Utilizing multimodal artificial intelligence to advance cardiovascular diseases

Author information +
History +
PDF (2017KB)

Abstract

The emergence of artificial intelligence (AI) is transforming cardiovascular medicine. Initially, AI applications concentrated on analyz-ing single data types, such as electrocardiograms and imaging studies. However, advancements in multimodal AI have now enabled the integration of diverse data sources, facilitating a comprehensive understanding of patient health and predictive accuracy of dis-ease outcomes. In this review, we discuss current achievements in multimodal AI within cardiovascular medicine, including various combinations of different modalities, computer algorithms of data integration and fusion, and their integration into clinical workflow. As the field continues to evolve, we further propose current challenges and prospects for their future implementation.

Keywords

artificial intelligence / multimodal / cardiovascular medicine / cardiology

Cite this article

Download citation ▾
Xin-yue Yang, Yi-ming Li, Jian-yong Wang, Yu-heng Jia, Zhang Yi, Mao Chen. Utilizing multimodal artificial intelligence to advance cardiovascular diseases. Precision Clinical Medicine, 2025, 8(3): pbaf016 DOI:10.1093/pcmedi/pbaf016

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

Figures 4 and 5 were created with Figdraw image and illustration software.

Author contributions

X.Y., Y.L., and J.W. wrote the original article, X.Y. and M.C. conceived the original ideas, M.C and Z.Y. supervised the manuscript, X.Y. and Y.J. completed visualization, M.C. and Y.L. helped with revision and editing, M.C. and J.W. completed funding acquisition. All authors read and approved the final manuscript and participated in final approval of the version to be published.

Conflict of interest

None declared.

Funding

This work was supported by the National Natural Science Foundation of China (grant Nos. 62306192, U23A20395, 82170375, and 62476185), 1.3.5 project for disciplines of excellence from West China Hospital of Sichuan University (grant Nos. ZYGD23021 and 23HXFH009), and the Natural Science Foundation of Sichuan Province, China (grant No. 2023NSFSC1638).

References

[1]

Lu MY, Williamson DFK, Chen TY et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng 2021; 5: 555-70. https://doi.org/10.1038/s41551-020-00682-w.

[2]

Muse ED, Topol EJ. Transforming the cardiometabolic disease landscape: multimodal AI-powered approaches in prevention and management. Cell Metab 2024; 36: 670-83. https://doi.org/10.1016/j.cmet.2024.02.002.

[3]

Jaltotage B, Lu J, Dwivedi G. Use of artificial intelligence includ-ing multimodal systems to improve the management of car-diovascular disease. Can J Cardiol 2024; 40: 1804-12. https://doi.org/10.1016/j.cjca.2024.07.014.

[4]

van der Hoeven BL, Schalij MJ, Delgado V. Multimodality imag-ing in interventional cardiology. Nat Rev Cardiol 2012; 9: 333-46. https://doi.org/10.1038/nrcardio.2012.14.

[5]

Berman DS. Fourth annual Mario S. Verani, MD Memorial Lec-ture: noninvasive imaging in coronary artery disease: chang-ing roles, changing players. J Nucl Cardiol 2006; 13: 457-73. https://doi.org/10.1016/j.nuclcard.2006.05.009.

[6]

Jone P-N, Haak A, Petri N et al. Echocardiography-fluoroscopy fusion imaging for guidance of congenital and structural heart disease interventions. JACC: Cardiovasc Imaging 2019; 12: 1279-82. https://doi.org/10.1016/j.jcmg.2018.11.010.

[7]

Gao J, Li P, Chen Z et al. A survey on deep learning for multi-modal Data fusion. Neural Comput 2020; 32: 829-64. https://doi.org/10.1162/neco_a_01273.

[8]

Acosta JN, Falcone GJ, Rajpurkar P et al. Multimodal biomedical AI. Nat Med 2022; 28: 1773-84. https://doi.org/10.1038/s41591-022-01981-2.

[9]

Azam MA, Khan KB, Salahuddin S et al. A review on multi-modal medical image fusion: compendious analysis of medi-cal modalities, multimodal databases, fusion techniques and quality metrics. Comput Biol Med 2022; 144: 105253. https://doi.org/10.1016/j.compbiomed.2022.105253.

[10]

Ngiam J, Khosla A, Kim M et al. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011, p. 689-96.

[11]

Li J, Li D, Savarese S et al. BLIP-2:bootstrapping language-image pre-training with frozen image encoders and large language models. In Proceedings of the 40th International Conference on Ma-chine Learning. PMLR, 2023, p. 19730-42.

[12]

Lu MY, Chen B, Williamson DF et al. A multimodal generative AI copilot for human pathology. Nature 2024; 634: 466-73. https://doi.org/10.1038/s41586-024-07618-3.

[13]

Christensen M, Vukadinovic M, Yuan N et al. Vision-language foundation model for echocardiogram interpretation. Nat Med 2024; 30: 1481-8. https://doi.org/10.1038/s41591-024-02959-y.

[14]

Zhou J, He X, Sun L et al. Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4. Nat Commun 2024; 15: 5649. https://doi.org/10.1038/s41467-024-50043-3.

[15]

Zhao T, Gu Y, Yang J et al. A foundation model for joint segmen-tation, detection and recognition of biomedical objects across nine modalities. Nat Methods 2025; 22: 166-76. https://doi.org/10.1038/s41592-024-02499-w.

[16]

Baltrusaitis T, Ahuja C, Morency L-P. Multimodal machine learning: A survey and taxonomy. IEEE Trans Pattern Anal Mach Intell 2019; 41: 423-43. https://doi.org/10.1109/TPAMI.2018.2798607.

[17]

Zhao F, Zhang C, Geng B. Deep multimodal data fusion. ACM Comput Surv 2024; 56: 1-36. https://doi.org/10.1145/3649447.

[18]

Yu C, Gao Z, Zhang W et al. Multitask learning for estimating multitype cardiac indices in MRI and CT based on adversarial reverse mapping. IEEE Transactions on Neural Networks and Learn-ing Systems 2021; 32: 493-506. https://doi.org/10.1109/TNNLS.2020.2984955.

[19]

Kong F, Wilson N, Shadden S. A deep-learning approach for direct whole-heart mesh reconstruction. Med Image Anal 2021; 74: 102222. https://doi.org/10.1016/j.media.2021.102222.

[20]

Ta K, Ahn SS, Thorn SL et al. Multi-task learning for motion analysis and segmentation in 3D echocardiography. IEEE Trans Med Imaging 2024; 43: 2010-20. https://doi.org/10.1109/TMI.2024.3355383.

[21]

Kong F, Shadden SC. Learning whole heart mesh generation from patient images for computational simulations. IEEE Trans Med Imag 2023; 42: 533-45. https://doi.org/10.1109/TMI.2022.3219284.

[22]

Laumer F, Amrani M, Manduchi L et al. Weakly supervised infer-ence of personalized heart meshes based on echocardiography videos. Med Image Anal 2023; 83: 102653. https://doi.org/10.1016/j.media.2022.102653.

[23]

Nishimori M, Kiuchi K, Nishimura K et al. Accessory path-way analysis using a multimodal deep learning model. Sci Rep 2021; 11: 8045. https://doi.org/10.1038/s41598-021-87631-y.

[24]

Gomes B, Singh A, O’Sullivan JW et al. Genetic architecture of cardiac dynamic flow volumes. Nat Genet 2024; 56: 245-57. https://doi.org/10.1038/s41588-023-01587-5.

[25]

Pirruccello JP, Chaffin MD, Chou EL et al. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet 2022; 54: 40-51. https://doi.org/10.1038/s41588-021-00962-4.

[26]

Tabassum R, Rämö JT, Ripatti P et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat Commun 2019; 10: 4329. https://doi.org/10.1038/s41467-019-11954-8.

[27]

Shah M, De A, Inácio MH et al. Environmental and ge-netic predictors of human cardiovascular ageing. Nat Commun 2023; 14: 4941. https://doi.org/10.1038/s41467-023-40566-6.

[28]

Soto JT, Weston Hughes J, Sanchez PA et al. Multimodal deep learning enhances diagnostic precision in left ventricular hy-pertrophy. European Heart Journal—Digital Health 2022; 3: 380-9. https://doi.org/10.1093/ehjdh/ztac033.

[29]

Tang P, Yan X, Nan Y et al. FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classifica-tion. Med Image Anal 2022; 76: 102307. https://doi.org/10.1016/j.media.2021.102307.

[30]

Khader F, Müller-Franzes G, Wang T et al. Multimodal deep learning for integrating chest radiographs and clinical param-eters: A case for transformers. Radiology 2023; 309: e230806. https://doi.org/10.1148/radiol.230806.

[31]

Maiorino E, Loscalzo J. Phenomics and robust multiomics data for cardiovascular disease subtyping. Arterioscler Thromb Vasc Biol 2023; 43: 1111-23. https://doi.org/10.1161/ATVBAHA.122.318892.

[32]

Banerjee A, Dashtban A, Chen S et al. Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic valida-tion study. The Lancet Digital Health 2023; 5: e370-9. https://doi.org/10.1016/S2589-7500(23)00065-1.

[33]

Karczewski KJ, Snyder MP. Integrative omics for health and dis-ease. Nat Rev Genet 2018; 19: 299-310. https://doi.org/10.1038/nrg.2018.4.

[34]

Zhang L, Yang H, Zhou C et al. Artificial intelligence-driven multiomics predictive model for abdominal aortic aneurysm subtypes to identify heterogeneous immune cell infiltra-tion and predict disease progression. Int Immunopharmacol 2024; 138: 112608. https://doi.org/10.1016/j.intimp.2024.112608.

[35]

Reel PS, Reel S, van Kralingen JC et al. Machine learning for classification of hypertension subtypes using multi-omics: A multi-centre, retrospective, data-driven study. EBioMedicine 2022; 84: 104276. https://doi.org/10.1016/j.ebiom.2022.104276.

[36]

De Marvao A, McGurk KA, Zheng SL et al. Phenotypic expression and outcomes in individuals with rare genetic variants of hy-pertrophic cardiomyopathy. J Am Coll Cardiol 2021; 78: 1097-110. https://doi.org/10.1016/j.jacc.2021.07.017.

[37]

Lloyd-Jones DM, Allen NB, Anderson CAM et al. Life’s Essential 8: updating and enhancing the American Heart Association’s Construct of Cardiovascular Health: A presidential advisory from the American Heart Association. Circulation 2022; 146: e18-43.. https://doi.org/10.1161/CIR.0000000000001078.

[38]

Grundy SM, Stone NJ, Bailey AL et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/ NLA/PCNA Guideline on the Management of blood Cholesterol: A report of the American College of Cardi-ology/American Heart Association Task Force on Clin-ical Practice Guidelines. Circulation 2019; 139: e1082-143. https://doi.org/10.1161/CIR.0000000000000625.

[39]

Yang X, Li J, Hu D et al. Predicting the 10-year risks of atheroscle-rotic cardiovascular disease in Chinese population: the China-PAR Project (Prediction for ASCVD Risk in China). Circula-tion 2016; 134: 1430-40. https://doi.org/10.1161/CIRCULATIONAHA.116.022367.

[40]

Polonsky TS, Greenland P. CVD screening in low-risk, asymptomatic adults: clinical trials needed. Nat Rev Car-diol 2012; 9: 599-604. https://doi.org/10.1038/nrcardio.2012.114.

[41]

Clapp MA, Kim E, James KE et al. Comparison of natural language processing of clinical notes with a validated risk-stratification tool to predict severe maternal morbidity. JAMA Netw Open 2022; 5: e2234924. https://doi.org/10.1001/jamanetworkopen.2022.34924.

[42]

Forrest IS, Petrazzini BO, Duffy Á et al. Machine learning-based marker for coronary artery disease: derivation and val-idation in two longitudinal cohorts. Lancet (London, England) 2023; 401: 215-25. https://doi.org/10.1016/S0140-6736(22)02079-7.

[43]

Oikonomou EK, Holste G, Yuan N et al. A multimodal video-based AI biomarker for aortic stenosis development and pro-gression. JAMA Cardiol 2024; 9: 534-44. https://doi.org/10.1001/jamacardio.2024.0595.

[44]

Gao Z, Liu X, Kang Y et al. Improving the prognostic evaluation precision of hospital outcomes for heart failure using admis-sion notes and clinical tabular data: multimodal deep learning model. J Med Internet Res 2024; 26: e54363. https://doi.org/10.2196/54363.

[45]

Feher A, Bednarski B, Miller RJ et al. Artificial intelligence pre-dicts hospitalization for acute heart failure exacerbation in patients undergoing myocardial perfusion imaging. J Nucl Med 2024; 65: 768-74. https://doi.org/10.2967/jnumed.123.266761.

[46]

Hausleiter J, Lachmann M, Stolz L et al. Artificial intelligence-derived risk score for mortality in secondary mitral regurgita-tion treated by transcatheter edge-to-edge repair: the EuroSMR risk score. Eur Heart J 2024; 45: 922-36. https://doi.org/10.1093/eurheartj/ehad871.

[47]

Gautam N, Ghanta SN, Clausen A et al. Contemporary appli-cations of machine learning for device therapy in heart failure. JACC Heart Failure 2022; 10: 603-22. https://doi.org/10.1016/j.jchf.2022.06.011.

[48]

de A Fernandes F, Larsen K, He Z et al. A machine learning method integrating ECG and gated SPECT for cardiac resyn-chronization therapy decision support. Eur J Nucl Med Mol Imag-ing 2023; 50: 3022-33. https://doi.org/10.1007/s00259-023-06259-4.

[49]

Chowdhury S, Chen Y, Li P et al. Stratifying heart failure pa-tients with graph neural network and transformer using Elec-tronic Health Records to optimize drug response prediction. J Am Med Inform Assoc 2024; 31: 1671-81. https://doi.org/10.1093/jamia/ocae137.

[50]

Mora D, Nieto JA, Mateo J et al. Machine learning to predict out-comes in patients with acute pulmonary embolism who pre-maturely discontinued anticoagulant therapy. Thromb Haemost 2022; 122: 570-7. https://doi.org/10.1055/a-1525-7220.

[51]

Mele M, Mele A, Imbrici P et al. Pleiotropic effects of direct oral anticoagulants in chronic heart failure and atrial fibrillation: machine learning analysis. Molecules 2024; 29: 2651. https://doi.org/10.3390/molecules29112651.

[52]

Wu X, Li W, Tu H. Big data and artificial intelligence in cancer research. Trends Cancer 2024; 10: 147-60. https://doi.org/10.1016/j.trecan.2023.10.006.

[53]

Qiu Y, Guo H, Wang S et al. Deep learning-based multimodal fusion of the surface ECG and clinical features in prediction of atrial fibrillation recurrence following catheter ablation. BMC Med Inf Decis Making 2024; 24: 225. https://doi.org/10.1186/s12911-024-02616-x.

[54]

Liu C-M, Chen W-S, Chang S-L et al. Use of artificial intelligence and I-score for prediction of recurrence before catheter abla-tion of atrial fibrillation. Int J Cardiol 2024; 402: 131851. https://doi.org/10.1016/j.ijcard.2024.131851.

[55]

Yang S, Kweon J, Roh J-H et al. Deep learning segmenta-tion of major vessels in X-ray coronary angiography. Sci Rep 2019; 9: 16897. https://doi.org/10.1038/s41598-019-53254-7.

[56]

Griffin WF, Choi AD, Riess JS et al. AI evaluation of stenosis on coronary CTA, comparison with quantitative coronary an-giography and fractional flow reserve. JACC: Cardiovasc Imaging 2023; 16: 193-205. https://doi.org/10.1016/j.jcmg.2021.10.020.

[57]

Yi Y, Xu C, Xu M et al. Diagnostic improvements of deep learning-Based image reconstruction for assessing calcification-related obstructive coronary artery disease. Front Cardiovasc Med 2021; 8: 758793. https://doi.org/10.3389/fcvm.2021.758793.

[58]

Koo B-K, Yang S, Jung JW et al. Artificial intelligence-Enabled quantitative coronary plaque and hemodynamic analysis for predicting acute coronary syndrome. JACC: Cardiovasc Imaging 2024; 17: 1062-76. https://doi.org/10.1016/j.jcmg.2024.03.015.

[59]

Ozturk C, Pak DH, Rosalia L et al. AI-powered multimodal mod-eling of personalized hemodynamics in aortic stenosis. Adv Sci (Weinh) 2025; 12: e2404755. https://doi.org/10.1002/advs.202404755.

[60]

Chessa M, Van De Bruaene A, Farooqi K et al. Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: an excit-ing future. Eur Heart J 2022; 43: 2672-84. https://doi.org/10.1093/eurheartj/ehac266.

[61]

Hashimoto DA, Rosman G, Rus D et al. Artificial intelligence in surgery: promises and perils. Ann Surg 2018; 268: 70-6. https://doi.org/10.1097/SLA.0000000000002693.

[62]

Sentiar AR. https://sentiar.comAccessed date: 10 May, 2025)

[63]

Wang DD, Qian Z, Vukicevic M et al. 3D Printing, computational modeling, and artificial intelligence for structural heart dis-ease. JACC Cardiovascular Imaging 2021; 14: 41-60. https://doi.org/10.1016/j.jcmg.2019.12.022..

[64]

Vukicevic M, Mehta SM, Grande-Allen KJ et al. Development of 3D printed mitral valve constructs for transcatheter device modeling of tissue and device deformation. Ann Biomed Eng 2022; 50: 426-39. https://doi.org/10.1007/s10439-022-02927-y.

[65]

Vernon MJ, Mela P, Dilley RJ et al. 3D printing of heart valves. Trends Biotechnol 2024; 42: 612-30. https://doi.org/10.1016/j.tibtech.2023.11.001.

[66]

Vukicevic M, Mosadegh B, Min JK et al. Cardiac 3D printing and its future directions. JACC Cardiovascular Imaging 2017; 10: 171-84. https://doi.org/10.1016/j.jcmg.2016.12.001.

[67]

Wong CK, Hai JJ, Lau Y-M et al. Protocol for home-based solu-tion for remote atrial fibrillation screening to prevent recur-rence stroke (HUA-TUO AF Trial): a randomised controlled trial. BMJ Open 2022; 12: e053466. https://doi.org/10.1136/bmjopen-2021-053466.

[68]

Cowie MR, Lam CSP. Remote monitoring and digital health tools in CVD management. Nat Rev Cardiol 2021; 18: 457-8. https://doi.org/10.1038/s41569-021-00548-x.

[69]

Ginder C, Li J, Halperin JL et al. Predicting malignant ventricular arrhythmias using real-time remote monitoring. J Am Coll Car-diol 2023; 81: 949-61. https://doi.org/10.1016/j.jacc.2022.12.024.

[70]

Chowdhury AK, Tjondronegoro D, Chandran V et al. Prediction of relative physical activity intensity using multimodal sensing of physiological data. Sensors 2019; 19: 4509. https://doi.org/10.3390/s19204509.

[71]

Niu X, Han H, Shan S et al. VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video. 2018. https://doi.org/10.48550/arXiv.1810.04927.

[72]

Mousavi S, Fotoohinasab A, Afghah F. Single-modal and multi-modal false arrhythmia alarm reduction using attention-based convolutional and recurrent neural networks. PLoS One 2020; 15: e0226990. https://doi.org/10.1371/journal.pone.0226990.

[73]

Hassoon A, Baig Y, Naiman DQ et al. Randomized trial of two artificial intelligence coaching interventions to increase physi-cal activity in cancer survivors. Npj Digit Med 2021; 4: 168. https://doi.org/10.1038/s41746-021-00539-9.

[74]

Kozaily E, Geagea M, Akdogan ER et al. Accuracy and consis-tency of online large language model-based artificial intelli-gence chat platforms in answering patients’ questions about heart failure. Int J Cardiol 2024; 408: 132115. https://doi.org/10.1016/j.ijcard.2024.132115.

[75]

Allen B, Agarwal S, Coombs L et al. 2020 ACR Data Science Insti-tute Artificial Intelligence Survey. Journal of the American College of Radiology: JACR 2021; 18: 1153-9. https://doi.org/10.1016/j.jacr.2021.04.002.

[76]

Subbiah V. Fragmentation in medicine harms patients and hin-ders research. Nat Med 2024; 30: 2394-. https://doi.org/10.1038/s41591-024-03194-1.

[77]

Ghosh S, Boucher C, Bian J et al. Propensity score synthetic augmentation matching using generative adversarial networks (PSSAM-GAN). Computer Methods and Programs in Biomedicine Update 2021; 1: 100020. https://doi.org/10.1016/j.cmpbup.2021.100020.

[78]

Averitt AJ, Vanitchanant N, Ranganath R et al. The Counter-factual χ-GAN: finding comparable cohorts in observational health data. J Biomed Inform 2020; 109: 103515. https://doi.org/10.1016/j.jbi.2020.103515.

[79]

Corral-Acero J, Margara F, Marciniak M et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J 2020; 41: 4556-64. https://doi.org/10.1093/eurheartj/ehaa159.

[80]

DeCamp M, Lindvall C. Mitigating bias in AI at the point of care. Science 2023; 381: 150-2. https://doi.org/10.1126/science.adh2713.

[81]

Leshem A, Segal E, Elinav E. The gut microbiome and individual-specific responses to diet. mSystems 2020; 5: e00665-20. https://doi.org/10.1128/mSystems.00665-20.

[82]

Feiner JR, Severinghaus JW, Bickler PE. Dark skin decreases the accuracy of pulse oximeters at low oxygen satura-tion: the effects of oximeter probe type and gender. Anesth Analg 2007; 105: S18-23. https://doi.org/10.1213/01.ane.0000285988.35174.d9.

[83]

Gianfrancesco MA, Tamang S, Yazdany J et al. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 2018; 178: 1544-7. https://doi.org/10.1001/jamainternmed.2018.3763.

[84]

Mahmood SS, Levy D, Vasan RS et al. The Framingham Heart Study and the epidemiology of cardiovascular disease: a histor-ical perspective. The Lancet 2014; 383: 999-1008. https://doi.org/10.1016/S0140-6736(13)61752-3.

[85]

Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tu-mors. Cell 2018; 173: 530. https://doi.org/10.1016/j.cell.2018.03.059.

[86]

Parisi GI, Kemker R, Part JL et al. Continual Lifelong Learning with Neural Networks: A review. Neural Netw 2019; 113: 54-71. https://doi.org/10.1016/j.neunet.2019.01.012.

[87]

Hoare D, Bussooa A, Neale S et al. The future of cardiovascular stents: bioresorbable and integrated biosensor technology. Adv Sci (Weinh) 2019; 6: 1900856. https://doi.org/10.1002/advs.201900856.

[88]

Castelvecchi D. Can we open the black box of AI? Nature 2016; 538: 20-3. https://doi.org/10.1038/538020a.

[89]

Ferrario A, Loi M, Viganò E. Trust does not need to be human: it is possible to trust medical AI. J Med Ethics 2020; 47: 437-8. https://doi.org/10.1136/medethics-2020-106922.

[90]

Tjoa E, Guan C. A survey on explainable artificial intelli-gence (XAI): towards medical XAI. IEEE Trans Neural Netw Learn-ing Syst 2021; 32: 4793-813. https://doi.org/10.1109/TNNLS.2020.3027314.

[91]

Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 2022; 79: 102470. https://doi.org/10.1016/j.media.2022.102470.

[92]

Reddy S. Explainability and artificial intelligence in medicine. The Lancet Digital Health 2022; 4: e214-5. https://doi.org/10.1016/S2589-7500(22)00029-2.

[93]

Ribeiro MT, Singh S, Guestrin C. “why should I trust you?”: ex-plaining the predictions of any classifier. 2016. https://doi.org/10.48550/arXiv.1602.04938.

[94]

Chen H, Lundberg S, Lee S-I. Explaining models by propagating shapley values of local components. 2019. https://doi.org/10.48550/arXiv.1911.11888.

[95]

Selvaraju RR, Cogswell M, Das A et al. Grad-CAM: visual expla-nations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p. 618-26.

[96]

Arrieta AB, Díaz-Rodríguez N, Ser JD et al. Explainable artifi-cial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. 2019. https://doi.org/10.48550/arXiv.1910.10045.

[97]

Cruz Rivera S, Liu X, Chan A-W et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med 2020; 26: 1351-63. https://doi.org/10.1038/s41591-020-1037-7.

[98]

Martin KD, Zimmermann J. Artificial intelligence and its im-plications for data privacy. Curr Opin Psychol 2024; 58: 101829. https://doi.org/10.1016/j.copsyc.2024.101829.

[99]

Zeb I, Uqaily R, Gonuguntla K et al. Multimodality assessment of high-vs. low-gradient aortic stenosis using echocardiogra-phy and cardiac CT. J Cardiovasc Comput Tomogr 2023; 17: 421-8. https://doi.org/10.1016/j.jcct.2023.09.002.

[100]

Danad I, Szymonifka J, Twisk JWR et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with frac-tional flow reserve as a reference standard: a meta-analysis. Eur Heart J 2016; 38: 991-8. https://doi.org/10.1093/eurheartj/ehw095.

[101]

Achenbach S, Fuchs F, Goncalves A et al. Non-invasive imag-ing as the cornerstone of cardiovascular precision medicine. European Heart Journal—Cardiovascular Imaging 2022; 23: 465-75. https://doi.org/10.1093/ehjci/jeab287.

[102]

Dahl A, Hernandez-Meneses M, Perissinotti A et al. Echocardio-graphy and FDG-PET/CT scan in gram-negative bacteremia and cardiovascular infections. Curr Opin Infect Dis 2021; 34: 728-36. https://doi.org/10.1097/QCO.0000000000000781.

[103]

Thackeray JT, Derlin T, Haghikia A et al. Molecular imaging of the Chemokine receptor CXCR4 after acute myocardial infarc-tion. JACC Cardiovasc Imaging 2015; 8: 1417-26. https://doi.org/10.1016/j.jcmg.2015.09.008.

[104]

Nagueh SF, Smiseth OA, Appleton CP et al. Recommenda-tions for the evaluation of left ventricular diastolic function by Echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovas-cular Imaging. Eur Heart J Cardiovasc Imaging 2016; 17: 1321-60. https://doi.org/10.1093/ehjci/jew082.

[105]

Wagner A, Mahrholdt H, Holly TA et al. Contrast-enhanced MRI and routine single photon emission computed tomogra-phy (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003; 361: 374-9. https://doi.org/10.1016/S0140-6736(03)12389-6.

[106]

Gould KL, Johnson NP. Coronary CT angiography with PET perfusion imaging: hybrid or hype? JACC Cardiovasc Imaging 2017; 10: 1371-3. https://doi.org/10.1016/j.jcmg.2016.09.033.

[107]

Karim R, Blake L-E, Inoue J et al. Algorithms for left atrial wall segmentation and thickness—evaluation on an open-source CT and MRI image database. Med Image Anal 2018; 50: 36-53. https://doi.org/10.1016/j.media.2018.08.004.

[108]

Rajiah PS, Reddy P, Baliyan V et al. Utility of CT and MRI in tricuspid valve interventions. Radiographics 2023; 43: e220153. https://doi.org/10.1148/rg.220153.

[109]

Freed BH, Collins JD, François CJ et al. MR and CT imaging for the evaluation of pulmonary hypertension. JACC Cardiovasc Imaging 2016; 9: 715-32. https://doi.org/10.1016/j.jcmg.2015.12.015.

[110]

Makowski MR, Rischpler C, Ebersberger U et al. Multi-parametric PET and MRI of myocardial damage after myocardial infarction: correlation of integrin αv β3 ex-pression and myocardial blood flow. Eur J Nucl Med Mol Imaging 2021; 48: 1070-80. https://doi.org/10.1007/s00259-020-05034-z.

[111]

Rischpler C, Nekolla SG, Kunze KP et al. PET/MRI of the heart. Semin Nucl Med 2015; 45: 234-47. https://doi.org/10.1053/j.semnuclmed.2014.12.004.

[112]

Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review. Brief Bioinform 2022; 23: bbab569. https://doi.org/10.1093/bib/bbab569.

[113]

Steyaert S, Pizurica M, Nagaraj D et al. Multimodal data fusion for cancer biomarker discovery with deep learning. Nature Ma-chine Intelligence 2023; 5: 351-62. https://doi.org/10.1038/s42256-023-00633-5.

AI Summary AI Mindmap
PDF (2017KB)

1142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/