The gut virome in association with the bacteriome in gastrointestinal diseases and beyond: roles, mechanisms, and clinical applications

Zhiyang Feng , Elke Burgermeister , Anna Philips , Tao Zuo , Weijie Wen

Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (2) : pbaf010

PDF (4530KB)
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (2) :pbaf010 DOI: 10.1093/pcmedi/pbaf010
Review
research-article

The gut virome in association with the bacteriome in gastrointestinal diseases and beyond: roles, mechanisms, and clinical applications

Author information +
History +
PDF (4530KB)

Abstract

The gut virome, an essential component of the intestinal microbiome, constitutes ∼0.1% of the total microbial biomass but contains a far greater number of particles than bacteria, with phages making up 90%-95% of this virome. This review systematically examines the developmental patterns of the gut virome, focusing on factors influencing its composition, including diet, environment, host genetics, and immunity. Additionally, it explores the gut virome's associations with various diseases, its interactions with gut bacteria and the immune system, and its emerging clinical applications.

Keywords

gut virome / inflammatory bowel disease / fecal microbiota transplantation / colorectal cancer / probiotics / dietary intervention

Cite this article

Download citation ▾
Zhiyang Feng, Elke Burgermeister, Anna Philips, Tao Zuo, Weijie Wen. The gut virome in association with the bacteriome in gastrointestinal diseases and beyond: roles, mechanisms, and clinical applications. Precision Clinical Medicine, 2025, 8(2): pbaf010 DOI:10.1093/pcmedi/pbaf010

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 82172323, 32100134, 823B2010), Guangdong Provincial Natural Science Foundation (Grant No. 2024A1515010533), Guangzhou Key R&D program (Grant No. 202206010014), and a seed fund from the Sixth Affiliated Hospital of Sun Yat-sen University and Sun Yat-sen University (Grant No. 2022JBGS03).

Author contributions

Zhiyang Feng (Writing—original draft), Elke Burgermeister (Writing—review & editing), Anna Philips (Writing—review & editing), Tao Zuo (Conceptualization, Supervision, Writing—review & editing) and Weijie Wen (Conceptualization, Supervision, Writing—review & editing).

Conflict of interest

None declared. In addition, as an Editorial Board Member of Precision Clinical Medicine, the corresponding author Tao Zuo was blinded from reviewing and making decision on this manuscript.

References

[1]

Gregory AC, Zablocki O, Zayed AA et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 2020;28:724-40. https://doi.org/10.1016/j.chom.2020.08.003

[2]

Shkoporov AN, Clooney AG, Sutton TDS et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 2019,26:527-41. https://doi.org/10.1016/j.chom.2019.09.009

[3]

Cao Z, Sugimura N, Burgermeister E et al. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022;81:104113. https://doi.org/10.1016/j.ebiom.2022.104113

[4]

Virgin HW. The virome in mammalian physiology and disease. Cell 2014;157:142-50. https://doi.org/10.1016/j.cell.2014.02.032

[5]

Troeger C, Blacker BF, Khalil IA et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 2018;18:1211-28. https://doi.org/10.1016/S1473-3099(18)30362-1

[6]

Tate JE, Burton AH, Boschi-Pinto C et al. Global, regional, and national estimates of rotavirus mortality in children< 5 years of age, 2000-2013. Clin Infect Dis 2016;62:S96-S105. https://doi.org/10.1093/cid/civ1013

[7]

Gogokhia L, Buhrke K, Bell R et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 2019;25:285-99. https://doi.org/10.1016/j.chom.2019.01.008

[8]

Ooijevaar RE, Terveer EM, Verspaget HW et al. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med 2019;70:335-51. https://doi.org/10.1146/annurev-med-111717-122956

[9]

Lim ES, Zhou Y, Zhao G et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med 2015;21:1228-34. https://doi.org/10.1038/nm.3950

[10]

Shah SA, Deng L, Thorsen J et al. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023;8:986-98. https://doi.org/10.1038/s41564-023-01345-7

[11]

Tisza MJ, Lloyd RE, Hoffman K et al. Longitudinal phagebacteria dynamics in the early life gut microbiome. Nat Microbiol 2025;10:420-30. https://doi.org/10.1038/s41564-024-01906-4

[12]

Minot S, Bryson A, Chehoud C et al. Rapid evolution of the human gut virome. Proc Natl Acad Sci USA 2013;110:12450-5. https://doi.org/10.1073/pnas.1300833110

[13]

Martino C, Dilmore AH, Burcham ZM et al. Microbiota succession throughout life from the cradle to the grave. Nat Rev Micro 2022;20:707-20. https://doi.org/10.1038/s41579-022-00768-z

[14]

Johansen J, Atarashi K, Arai Y et al. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat Microbiol 2023;8:1064-78. https://doi.org/10.1038/s41564-023-01370-6

[15]

Avellaneda-Franco L, Xie L, Nakai M et al. Dietary fiber intake impacts gut bacterial and viral populations in a hypertensive mouse model. Gut Microbes 2024;16:2407047. https://doi.org/10.1080/19490976.2024.2407047

[16]

Liu TC, Kern JT, Jain U et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 2021;29:9881001. https://doi.org/10.1016/j.chom.2021.04.004

[17]

Garcia-Mantrana I, Selma-Royo M, Alcantara C et al. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 2018;9:890. https://doi.org/10.3389/fmicb.2018.00890

[18]

Huang Z, Li Y, Park H et al. Unveiling and harnessing the human gut microbiome in the rising burden of non-communicable diseases during urbanization. Gut Microbes 2023;15:2237645. https://doi.org/10.1080/19490976.2023.2237645

[19]

Zuo T, Sun Y, Wan Y et al. Human-gut-DNA virome variations across geography, ethnicity, and urbanization. Cell Host Microbe 2020;28:741-51. https://doi.org/10.1016/j.chom.2020.08.005

[20]

Delgado-Wicke P,Fernández de Córdoba-Oñate S, Roy-Vallejo E et al. Genetic variants regulating the immune response improve the prediction of COVID-19 severity provided by clinical variables. Sci Rep 2024;14:20728. https://doi.org/10.1038/s41598-024-71476-2

[21]

Zuo T. Gut bacteriophages ignite mammalian immunity. Nat Rev Micro 2023;21:634. https://doi.org/10.1038/s41579-023-00911-4

[22]

Lozupone CA, Li M, Campbell TB et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe 2013;14:329-39. https://doi.org/10.1016/j.chom.2013.08.006

[23]

Monaco CL, Gootenberg DB, Zhao G et al. Altered virome and bacterial microbiome in human immunodeficiency virusassociated acquired immunodeficiency syndrome. Cell Host Microbe 2016;19:311-22. https://doi.org/10.1016/j.chom.2016.02.011

[24]

Chevallereau A, Pons BJ, van Houte S et al. Interactions between bacterial and phage communities in natural environments. Nat Rev Micro 2022;20:49-62. https://doi.org/10.1038/s41579-021-00602-y

[25]

Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2021;18:889-904. https://doi.org/10.1038/s41423-020-00532-4

[26]

Yue WF, Du M, Zhu MJ. High temperature in combination with UV irradiation enhances horizontal transfer of stx 2 gene from E. coli O157: H7 to non-pathogenic E. coli. PLoS One 2012;7:e31308. https://doi.org/10.1371/journal.pone.0031308

[27]

Liu X, Lin S, Liu T et al. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella. Nucleic Acids Res 2021;49:3427-40. https://doi.org/10.1093/nar/gkab137

[28]

Boling L, Cuevas DA, Grasis JA et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 2020;11:721-34. https://doi.org/10.1080/19490976.2019.1701353

[29]

Korkina L, Ozben T, Saso L. Modulation of oxidative stress: pharmaceutical and pharmacological aspects. Oxid Med Cell Long 2016;2016:6023417. https://doi.org/10.1155/2016/6023417

[30]

Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Micro 2022;20:737-49. https://doi.org/10.1038/s41579-022-00755-4

[31]

Camara-Wilpert S, Mayo-Muñoz D, Russel J et al. Bacteriophages suppress CRISPR-Cas immunity using RNA-based antiCRISPRs. Nature 2023;623:601-7. https://doi.org/10.1038/s41586-023-06612-5

[32]

Yuan X, Huang Z, Zhu Z et al. Recent advances in phage defense systems and potential overcoming strategies. Biotechnol Adv 2023;65:108152. https://doi.org/10.1016/j.biotechadv.2023.108152

[33]

Silpe JE, Bassler BL. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 2019;176:268-80. https://doi.org/10.1016/j.cell.2018.10.059

[34]

Erez Z, Steinberger-Levy I, Shamir M et al. Communication between viruses guides lysis-lysogeny decisions. Nature 2017;541:488-93. https://doi.org/10.1038/nature21049

[35]

Bloch S, Nejman-Faleńczyk B, Licznerska K et al. Complex effects of the exo-xis region of the Shiga toxin-converting bacteriophage Φ24 B genome on the phage development and the Escherichia coli host physiology. J Appl Genetics 2024;65:191-211. https://doi.org/10.1007/s13353-023-00799-z

[36]

Veses-Garcia M, Liu X, Rigden DJ et al. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microb 2015;81:8118-25. https://doi.org/10.1128/AEM.02034-15

[37]

Mai-Prochnow A, Hui JGK, Kjelleberg S et al. Big things in small packages: the genetics of filamentous phage and effects on fitness of their host. FEMS Microbiol Rev 2015;39:465-87. https://doi.org/10.1093/femsre/fuu007

[38]

Jahn MT, Arkhipova K, Markert SM et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 2019;26:542-50. https://doi.org/10.1016/j.chom.2019.08.019

[39]

Aktories K, Schwan C, Jank T. Clostridium difficile toxin biology. Annu Rev Microbiol 2017;71:281-307. https://doi.org/10.1146/annurev-micro-090816-093458

[40]

Brown EM, Arellano-Santoyo H, Temple ER et al. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe 2021;29:1351-65. https://doi.org/10.1016/j.chom.2021.07.011

[41]

Borodovich T, Shkoporov AN, Ross RP et al. Phage-mediated horizontal gene transfer and its implications for the human gut microbiome. Gastroenterol Rep 2022;10:goac012. https://doi.org/10.1093/gastro/goac012

[42]

Barr JJ, Auro R, Furlan M et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci USA 2013;110:10771-6. https://doi.org/10.1073/pnas.1305923110

[43]

Bichet MC, Chin WH, Richards W et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 2021;24:102287. https://doi.org/10.1016/j.isci.2021.102287

[44]

Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev 2019;39:2000-25. https://doi.org/10.1002/med.21572

[45]

Neil JA, Matsuzawa-Ishimoto Y, Kernbauer-Hölzl E et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat Microbiol 2019;4:1737-49. https://doi.org/10.1038/s41564-019-0470-1

[46]

Ingle H, Lee S, Ai T et al. Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat Microbiol 2019;4:1120-8. https://doi.org/10.1038/s41564-019-0416-7

[47]

Sweere JM, Ishak H et al. Van Belleghem JD, Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 2019;363:eaat9691. https://doi.org/10.1126/science.aat9691

[48]

Ivanov II, Littman DR. Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol 2011;14:106-14. https://doi.org/10.1016/j.mib.2010.12.003

[49]

Wang Q, Wang M, Yang Q et al. The role of bacteriophages in facilitating the horizontal transfer of antibiotic resistance genes in municipal wastewater treatment plants. Water Res 2025;268:122776. https://doi.org/10.1016/j.watres.2024.122776

[50]

Fluckiger A, Daillère R, Sassi M et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 2020;369:936-42. https://doi.org/10.1126/science.aax0701

[51]

Zuo T, Lu XJ, Zhang Y et al. Gut mucosal virome alterations in ulcerative colitis. Gut 2019;68:1169-79. https://doi.org/10.1136/gutjnl-2018-318131

[52]

Liang G, Cobián-Güemes AG, Albenberg L et al. The gut virome in inflammatory bowel diseases. Curr Opin Virol 2021;51:190-8. https://doi.org/10.1016/j.coviro.2021.10.005

[53]

Yang Y, An R, Lyu C et al. Interactions between human norovirus and intestinal microbiota/microbes: A scoping review. Food Microbiol 2024;119:104456. https://doi.org/10.1016/j.fm.2023.104456

[54]

Basic M, Keubler LM, Buettner M et al. Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10 deficient mice. Inflamm Bowel Dis 2014;20:431-43. https://doi.org/10.1097/01.MIB.0000441346.86827.ed

[55]

Cadwell K, Patel KK, Maloney NS et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 2010;141:1135-45. https://doi.org/10.1016/j.cell.2010.05.009

[56]

Amimo JO, Raev SA, Chepngeno J et al. Rotavirus interactions with host intestinal epithelial cells. Front Immunol 2021;12:793841. https://doi.org/10.3389/fimmu.2021.793841

[57]

Ball JM, Mitchell DM, Gibbons TF et al. Rotavirus NSP4: a multifunctional viral enterotoxin. Viral Immunol 2005;18:27-40. https://doi.org/10.1089/vim.2005.18.27

[58]

Nissen LHC, Nagtegaal ID, de Jong DJ et al. Epstein-Barr virus in inflammatory bowel disease: the spectrum of intestinal lymphoproliferative disorders. Journal of Crohn's and Colitis 2015;9:398-403. https://doi.org/10.1093/ecco-jcc/jjv040

[59]

Vega R, Bertran X, Menacho M et al. Cytomegalovirus infection in patients with inflammatory bowel disease. Korean J Gastroenterol 2022;80:60-5. https://doi.org/10.4166/kjg.2022.094

[60]

Norman JM, Handley SA, Baldridge MT et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015;160:447-60. https://doi.org/10.1016/j.cell.2015.01.002

[61]

Cornuault JK, Petit MA, Mariadassou M et al. Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes. Microbiome 2018;6:65. https://doi.org/10.1186/s40168-018-0452-1

[62]

Massimino L, Lovisa S, Lamparelli LA et al. Gut eukaryotic virome in colorectal carcinogenesis: Is that a trigger? Comput Struct Biotechnol J 2021;19:16-28. https://doi.org/10.1016/j.csbj.2020.11.055

[63]

Wagner J, Maksimovic J, Farries G et al. Bacteriophages in gut samples from pediatric Crohn's disease patients: metagenomic analysis using 454 pyrosequencing. Inflamm Bowel Dis 2013;19:1598-608. https://doi.org/10.1097/MIB.0b013e318292477c

[64]

Liang G, Conrad MA, Kelsen JR et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. Journal of Crohn's and Colitis 2020;14:1600-10. https://doi.org/10.1093/ecco-jcc/jjaa094

[65]

Adiliaghdam F, Amatullah H, Digumarthi S et al. Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Sci Immunol 2022;7:eabn6660. https://doi.org/10.1126/sciimmunol.abn6660

[66]

Mihindukulasuriya KA, Mars RAT, Johnson AJ et al. Multi-omics analyses show disease, diet, and transcriptome interactions with the virome. Gastroenterology 2021;161:1194-207. https://doi.org/10.1053/j.gastro.2021.06.07.

[67]

Li M, Wang C, Guo Q et al. More positive or more negative? Metagenomic analysis reveals roles of virome in human disease-related gut microbiome. Front Cell Infect Microbiol 2022;12:846063. https://doi.org/10.3389/fcimb.2022.846063

[68]

Zuo T, Wong SH, Lam K et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 2018;67:634-43. https://doi.org/10.1136/gutjnl-2017-313952

[69]

Shen S, Huo D, Ma C et al. Expanding the colorectal cancer biomarkers based on the human gut phageome. Microbiol Spectr 2021;9:e00090-21. https://doi.org/10.1128/Spectrum.00090-21

[70]

Chen F, Li S, Guo R et al. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J Adu Res 2023;49:103-14. https://doi.org/10.1016/j.jare.2022.09.012

[71]

Zuo W, Michail S, Sun F. Metagenomic analyses of multiple gut datasets revealed the association of phage signatures in colorectal cancer. Front Cell Infect Microbiol 2022;12:918010. https://doi.org/10.3389/fcimb.2022.918010

[72]

Broecker F, Moelling K. The roles of the virome in cancer. Microorganisms 2021;9:2538. https://doi.org/10.3390/microorganisms9122538

[73]

Thabane M, Marshall JK. Post-infectious irritable bowel syndrome. World J Gastroenterol 2009;15:3591. https://doi.org/10.3748/wjg.15.3591

[74]

Rodemann JF, Dubberke ER, Reske KA et al. Incidence of Clostridium difficile infection in inflammatory bowel disease. Clin Gastroenterol Hepatol 2007;5:339-44. https://doi.org/10.1016/j.cgh.2006.12.027

[75]

Koo HL, Ajami NJ, Jiang ZD et al. A nosocomial outbreak of norovirus infection masquerading as Clostridium difficile in-fection. Clin Infect Dis 2009;48:e75-7. https://doi.org/10.1086/597299

[76]

Nakatsu G, Zhou H, Wu WKK et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 2018;155:529-41. https://doi.org/10.1053/j.gastro.2018.04.018

[77]

Ou S, Wang H, Tao Y et al. Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism. Front Cell Infect Microbiol 2022;12:1020583. https://doi.org/10.3389/fcimb.2022.1020583

[78]

Laghi L, Randolph AE, Chauhan DP et al. JC virus DNA is present in the mucosa of the human colon and in colorectal cancers. Proc Natl Acad Sci USA 1999;96:7484-9. https://doi.org/10.1073/pnas.96.13.7484

[79]

Baandrup L, Thomsen LT, Olesen TB et al. The prevalence of human papillomavirus in colorectal adenomas and adenocarcinomas: a systematic review and meta-analysis. Eur J Cancer 2014;50:1446-61. https://doi.org/10.1016/j.ejca.2014.01.019

[80]

de Martel C, Georges D, Bray F et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 2020;8:e180-90. https://doi.org/10.1016/S2214-109X(19)30488-7

[81]

Leal Rodríguez C, Shah SA, Rasmussen MA et al. The infant gut virome is associated with preschool asthma risk independently of bacteria. Nat Med 2024;30:138-48. https://doi.org/10.1038/s41591-023-02685-x

[82]

Su RP, Wen WJ, Jin YF et al. Dietary Whey Protein protects against Crohn's disease by orchestrating cross-kingdom interaction between the gut phageome and bacteriome. Gut 2025; gutjnl-2024-334516. https://doi.org/10.1136/gutjnl-2024-334516.

[83]

Clooney AG, Sutton TDS, Shkoporov AN et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 2019;26:764-78. https://doi.org/10.1016/j.chom.2019.10.009

[84]

Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun 2002;70:3985-93. https://doi.org/10.1128/IAI.70.8.3985-3993.2002

[85]

Caldeira LDF, Borba HH, Tonin FS et al. Fecal microbiota transplantation in inflammatory bowel disease patients: a systematic review and meta-analysis. PLoS One 2020;15:e0238910. https://doi.org/10.1371/journal.pone.0238910

[86]

Haifer C, Paramsothy S, Kaakoush NO et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol hepatol 2022;7:141-51. https://doi.org/10.1016/S2468-1253(21)00400-3

[87]

Conceição-Neto N, Deboutte W, Dierckx T et al. Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut 2018;67:1558-9. https://doi.org/10.1136/gutjnl-2017-315281

[88]

Weingarden AR, Chen C, Bobr A et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiology Gastrointestinal Liver Physiol 2014;306:G310-9. https://doi.org/10.1152/ajpgi.00282.2013

[89]

Kelly CR, Ihunnah C, Fischer M et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014;109:106571. https://doi.org/10.1038/ajg.2014.133

[90]

Broecker F, Russo G, Klumpp J et al. Stable core virome despite variable microbiome after fecal transfer. Gut Microbes 2017;8:214-20. https://doi.org/10.1080/19490976.2016.1265196

[91]

McGill SK. Fecal microbiota transplant for severe Clostridioides difficile infection: Let's halt the raging fire. Clin Infect Dis 2021;73:720-1. https://doi.org/10.1093/cid/ciab047

[92]

Yu H, Li XX, Han X et al. Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol 2023;14:1126808. https://doi.org/10.3389/fmicb.2023.1126808

[93]

Park H, Laffin MR, Jovel J et al. The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor: a retrospective cohort study. Gut Microbes 2019;10:676-87. https://doi.org/10.1080/19490976.2019.1586037

[94]

Fujimoto K, Kimura Y, Allegretti JR et al. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology 2021;160:2089-102. https://doi.org/10.1053/j.gastro.2021.02.013

[95]

Broecker F, Klumpp J, Moelling K. Long-term microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection. Ann NY Acad Sci 2016;1372:2941. https://doi.org/10.1111/nyas.13100

[96]

Draper LA, Ryan FJ, Smith MK et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 2018;6:220. https://doi.org/10.1186/s40168-018-0598-x

[97]

Li N, Li Y, Huang Z et al. Faecal phageome transplantation alleviates intermittent intestinal inflammation in IBD and the timing of transplantation matters: a preclinical proof-of-concept study in mice. Gut 2025;74:868-70. https://doi.org/10.1136/gutjnl-2024-333598

[98]

Galtier M, Sordi LD, Sivignon A et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn's disease. J Crohns Colitis 2017;11:840-7. https://doi.org/10.1093/ecco-jcc/jjw224

[99]

Federici S, Kredo-Russo S, Valdés-Mas R et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 2022;185:2879-98. https://doi.org/10.1016/j.cell.2022.07.003

[100]

Cong J, Liu P, Han Z et al. Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8+ T cell effector functions. Immunity 2024;57:876-89. https://doi.org/10.1016/j.immuni.2024.02.014

[101]

Dong X, Pan P, Zheng DW et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv 2020;6:eaba1590. https://doi.org/10.1126/sciadv.aba1590

[102]

Khambhati K, Bhattacharjee G, Gohil N et al. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrugresistant pathogens. Bioeng Transl Med 2023;8:e10381. https://doi.org/10.1002/btm2.1038.

[103]

Ragothaman M, Yoo SY. Engineered phage-based cancer vaccines: Current advances and future directions. Vaccines 2023;11:919. https://doi.org/10.3390/vaccines11050919

[104]

Li HR, Zhou Y, Ye BC. Tumor-targeted delivery of PD-1displaying bacteriophages by Escherichia coli for adjuvant treatment of colorectal cancer. ACS Synth Biol 2025;14:407-19. https://doi.org/10.1021/acssynbio.4c00570

[105]

Zheng DW, Dong X, Pan P et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng 2019;3:71728. https://doi.org/10.1038/s41551-019-0423-2

[106]

Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023;13:1290296. https://doi.org/10.3389/fonc.2023.1290296

[107]

Sabino J, Hirten RP, Colombel JF. bacteriophages in gastroenterology-from biology to clinical applications. Aliment Pharmacol Ther 2020;51:53-63. https://doi.org/10.1111/apt.15557

[108]

Lamers CR, De Roos NM, Heerink HH et al. Lower impact of disease on daily life and less fatigue in patients with inflammatory bowel disease following a lifestyle intervention. Inflamm Bowel Dis 2022;28:1791-9. https://doi.org/10.1093/ibd/izac027

[109]

Wang S, Martins R, Sullivan MC et al. Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiome 2019;7:126. https://doi.org/10.1186/s40168-019-0740-4

[110]

Zeng W, Wu J, Xie H et al. Enteral nutrition promotes the remission of colitis by gut bacteria-mediated histidine biosynthesis. EBioMedicine 2024;100:104959. https://doi.org/10.1016/j.ebiom.2023.104959

[111]

Nybacka S, Törnblom H, Josefsson A et al. A low FODMAP diet plus traditional dietary advice versus a low-carbohydrate diet versus pharmacological treatment in irritable bowel syndrome (CARIBS): a single-centre, single-blind, randomised controlled trial[J]. Lancet Gastroenterol Hepatol 2024;9:507-20. https://doi.org/10.1016/S2468-1253(24)00045-1

[112]

Ringel-Kulka T, McRorie J, Ringel Y. Multi-center, double-blind, randomized, placebo-controlled, parallel-group study to evaluate the benefit of the probiotic Bifidobacterium infantis 35624 in non-patients with symptoms of abdominal discomfort and bloating. American J Gastroenterol 2017;112:145-51. https://doi.org/10.1038/ajg.2016.511

[113]

Tong H, Jiang Z, Song L et al. Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab 2024;36:2493-510. https://doi.org/10.1016/j.cmet.2024.10.019

[114]

Cao Z, Fan D, Sun Y et al. The gut ileal mucosal virome is disturbed in patients with Crohn's disease and exacerbates intestinal inflammation in mice. Nat Commun 2024;15:1638. https://doi.org/10.1038/s41467-024-45794-y

[115]

Thomson C, Garcia AL, Edwards CA. Interactions between dietary fibre and the gut microbiota. Proc Nutr Soc 2021;80:398408. https://doi.org/10.1017/S0029665121002834

[116]

Huang M, Chen Z, Lang C et al. Efficacy of mesalazine in combination with bifid triple viable capsules on ulcerative colitis and the resultant effect on the inflammatory factors. Cell Host Microbe 2018;24:500. https://doi.org/10.1016/j.chom.2018.09.011

[117]

Scaldaferri F, Gerardi V, Mangiola F et al. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastroenterol 2016;22:5505. https://doi.org/10.3748/wjg.v22.i24.5505

[118]

Rufino MN, Aleixo GFP, Trombine-Batista IE et al. Systematic review and meta-analysis of preclinical trials demonstrate robust beneficial effects of prebiotics in induced inflammatory bowel disease. J Nutr Biochem 2018;62:1-8. https://doi.org/10.1016/j.jnutbio.2018.05.016

[119]

Hallert C, Kaldma M, Petersson BG. Ispaghula husk may relieve gastrointestinal symptoms in ulcerative colitis in remission. Scand J Gastroenterol 1991;26:747-50. https://doi.org/10.3109/00 365529108998594

[120]

Hijová E, Šoltésová A, Salaj R et al. Preventive use of Lactobacillus plantarum LS/07 and inulin to relieve symptoms of acute colitis. Acta Biochim Pol 2015;62:553-7. https://doi.org/10.18388/abp.2015_1008

[121]

Schroeder BO, Birchenough GMH, Ståhlman M et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 2018;23:27-40. https://doi.org/10.1016/j.chom.2017.11.004

[122]

Wu Y, Li Y, Zheng Q et al. The efficacy of probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in irritable bowel syndrome: a systematic review and network metaanalysis. Nutrients 2024;16:2114. https://doi.org/10.3390/nu16132114

[123]

Gindin M, Febvre HP, Rao S et al. Bacteriophage for gastrointestinal health (PHAGE) study: evaluating the safety and tolerability of supplemental bacteriophage consumption. J Am Coll Nutr 2019;38:68-75. https://doi.org/10.1080/07315724.2018.1483783

[124]

Febvre HP, Rao S, Gindin M et al. PHAGE study: effects of supplemental bacteriophage intake on inflammation and gut microbiota in healthy adults. Nutrients 2019;11:666. https://doi.org/10.3390/nu11030666

[125]

D'Accolti M, Soffritti I, Mazzacane S et al. Bacteriophages as a potential 360-degree pathogen control strategy. Microorganisms 2021;9:261. https://doi.org/10.3390/microorganisms9020261

[126]

Grubb DS, Wrigley SD, Freedman KE et al. PHAGE-2 study: Supplemental bacteriophages extend Bifidobacterium animalis subsp. lactis BL04 benefits on gut health and microbiota in healthy adults. Nutrients 2020;12:2474. https://doi.org/10.3390/nu12082474

[127]

Tian X, Li S, Wang C et al. Gut virome-wide association analysis identifies cross-population viral signatures for inflammatory bowel disease. Microbiome 2024;12:130. https://doi.org/10.1 186/s40168-024-01832-x

[128]

Murovec B, Deutsch L, Stres B. Predictive modeling of colorectal cancer using exhaustive analysis of microbiome information layers available from public metagenomic data. Front Microbiol 2024;15:1426407. https://doi.org/10.3389/fmicb.2024.1426407

[129]

Fanizzi F, D'Amico F, Bombassaro IZ et al. The role of fecal microbiota transplantation in IBD. Microorganisms 2024;12:1755. https://doi.org/10.3390/microorganisms12091755

[130]

Huang H, Yang Y, Wang X et al. Gut virome dysbiosis impairs antitumor immunity and reduces 5-fluorouracil treatment efficacy for colorectal cancer. Front Oncol 2024;14:1501981. https://doi.org/10.3389/fonc.2024.1501981

AI Summary AI Mindmap
PDF (4530KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/