Predictive model for daily risk alerts in sepsis patients in the ICU: visualization and clinical analysis of risk indicators
Hao Yang , Jiaxi Li , Chi Zhang , Alejandro Pazos Sierra , Bairong Shen
Precision Clinical Medicine ›› 2025, Vol. 8 ›› Issue (1) : pbaf003
Predictive model for daily risk alerts in sepsis patients in the ICU: visualization and clinical analysis of risk indicators
This study introduces a novel Transformer-based time-series framework designed to revolutionize risk stratification in Intensive Care Units (ICUs) by predicting patient outcomes with high temporal precision. Leveraging sequential data from the eICU database, our two-stage architecture dynamically captures evolving health trajectories throughout a patient’s ICU stay, enabling real-time identification of high-risk individuals and actionable insights for personalized interventions. The model demonstrated exceptional predictive power, achieving a progressive AUC increase from 0.87 (±0.021) on admission day to 0.92 (±0.009) by day 5, reflecting its capacity to assimilate longitudinal physiological patterns. Rigorous external validation across geographically diverse cohorts—including an 81.8% accuracy on Chinese sepsis data (AUC=0.73) and 76.56% accuracy on MIMIC-IV-3.1 (AUC=0.84)—confirmed robust generalizability. Crucially, SHAP-derived temporal heatmaps unveiled mortality-associated feature dynamics over time, bridging the gap between model predictions and clinically interpretable biomarkers. These findings establish a new paradigm for ICU prognostics, where data-driven temporal modeling synergizes with clinician expertise to optimize triage, reduce diagnostic latency, and ultimately improve survival outcomes in critical care.
sepsis / Transformer / time-series / visualization / predicting mortality
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
/
| 〈 |
|
〉 |