Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway

Yanan Li , Meng Kong , Tong Qiu , Yi Ji

Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (4) : pbae026

PDF (2227KB)
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (4) :pbae026 DOI: 10.1093/pcmedi/pbae026
Research Article
research-article

Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway

Author information +
History +
PDF (2227KB)

Abstract

Background: Infantile hemangioma (IH) is the most prevalent benign vascular tumor in children, yet its pathogenesis remains incompletely understood. Research has established a strong association between SOX4 and tumor blood vessel formation. The objective of this study was to investigate the function and underlying mechanism of SOX4 in IH development with the aim of identifying novel therapeutic targets.

Methods: We identified the transcription factor SOX4 associated with IH through RNA-seq screening of IH microtumors and validated it in IH tissues. The effect of SOX4 on the biological behavior of CD31+ hemangioma-derived endothelial cells (HemECs) was investigated via in vitro cell experiments. In addition, RNA-seq analysis was performed on CD31+ HemECs with low expression levels of SOX4, and the target genes of SOX4 were identified. Finally, the effect of SOX4 on tumor angiogenesis was further elucidated through 3D microtumor and animal experiments.

Results: SOX4 is highly expressed in IH tissues and promotes the proliferation, migration, and angiogenesis of CD31+ HemECs. In addition, SOX4 binds to the endothelial cell-specific molecule 1 (ESM1) promoter to promote the progression of the PI3K/AKT signaling pathway. Finally, through IH 3D microtumor and animal experiments, SOX4 and ESM1 are shown to be tumorigenic genes that independently promote tumor progression.

Conclusions: SOX4 plays a crucial role in the progression of IH, and the SOX4/ESM1 axis may serve as a novel biomarker and potential therapeutic target for IH.

Keywords

infantile hemangioma / CD31+ HemECs / SOX4 / proliferation / angiogenesis

Cite this article

Download citation ▾
Yanan Li, Meng Kong, Tong Qiu, Yi Ji. Targeting ESM1 via SOX4 promotes the progression of infantile hemangioma through the PI3K/AKT signaling pathway. Precision Clinical Medicine, 2024, 7(4): pbae026 DOI:10.1093/pcmedi/pbae026

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 82473553 and 82273556), the Key Project in the Science & Technology Program of Sichuan Province (Grants No. 2022YFS0233 and 2022YFS0225), the Postdoctoral Foundation of West China Hospital of Sichuan University (Grant No. 2023HXBH056), the Project of Natural Science Foundation of Shandong Province (Grant No. ZR2022MH229), the ‘0 to 1’ Project of Sichuan University (Grant No. 2022SCUH0033), the Med-X Center for Informatics Funding Project (Grant No. YGJC004), the 1·3·5 Project for Disciplines of Excellence-Clinical Research Incubation Project of West China Hospital of Sichuan University (Grants No. 2023HXFH004, 2020HXFH048 and 2019HXFH056), and the 1·3·5 Project for Disciplines of Excellence-Clinical Research Interdisciplinary Innovation Project of West China Hospital of Sichuan University (Grant No. ZYJC21060). We thank Li Li and Chunjuan Bao (Institute of Clinical Pathology, West China Hospital, Sichuan University) for performing the histological staining.

Author contributions

Yanan Li (Data curation, Formal analysis, Investigation, Methodology, Software), Meng Kong (Conceptualization, Data curation, Methodology, Writing—original draft), Tong Qiu (Data curation), and Yi Ji (Funding acquisition, Methodology, Supervision, Writing—review & editing).

Supplementary data

Supplementary data is available at PCMEDI Journal online.

Conflict of interest

None declared.

Ethics approval and consent to participate

The study was approved by the West China Hospital of Sichuan University Biomedical Research Ethics Committee (No. 2017-414), and informed consent was obtained from all participants or legal guardians.

Data Availability

All relevant data are contained within the article. The original contributions presented in the study are included in the supplementary material. Additional data supporting the findings of this article are available from the corresponding author upon reasonable request.

References

[1]

Mariani LG, Ferreira LM, Rovaris DL et al. Infantile hemangiomas: risk factors for complications, recurrence and unaesthetic sequelae. An Bras Dermatol 2022;97:37-44. https://doi.org/10.1016/j.abd.2021.05.009.

[2]

Tan X, Guo S, Wang C. Propranolol in the Treatment of Infantile Hemangiomas. Clin Cosmet Investig Dermatol 2021;14:1155-63. https://doi.org/10.2147/CCID.S332625.

[3]

Anderson KR, Schoch JJ, Lohse CM et al. Increasing incidence of infantile hemangiomas (IH) over the past 35 years: Correlation with decreasing gestational age at birth and birth weight. J Am Acad Dermatol 2016;74:120-6. https://doi.org/10.1016/j.jaad.2015.08.024.

[4]

Rodríguez Bandera AI, Sebaratnam DF, Wargon O et al. Infantile hemangioma. Part 1: Epidemiology, pathogenesis, clinical presentation and assessment. J Am Acad Dermatol 2021;85:1379-92. https://doi.org/10.1016/j.jaad.2021.08.019.

[5]

Ji Y, Yang K, Zhou J et al. Propranolol for the treatment of ulcerated infantile hemangiomas: A prospective study. J Am Acad Dermatol 2022;86:1149-51. https://doi.org/10.1016/j.jaad.2021.04.055.

[6]

Xu W, Li S, Yu F et al. Role of Thrombospondin-1 and Nuclear Factor-κB Signaling Pathways in Antiangiogenesis of Infantile Hemangioma. Plast Reconstr Surg 2018;142:310e-21e. https://doi.org/10.1097/PRS.0000000000004684.

[7]

Kong M, Li Y, Wang K et al. Infantile hemangioma models: is the needle in a haystack? J Transl Med 2023;21:308. https://doi.org/10.1186/s12967-023-04144-0.

[8]

Soliman YS, Khachemoune A. Infantile hemangiomas: our current understanding and treatment options. Dermatol Online J 2018;24:13030. https://doi.org/10.5070/D3249041401.

[9]

Yang K, Qiu T, Gong X et al. Integrated nontargeted and targeted metabolomics analyses amino acids metabolism in infantile hemangioma. Front Oncol 2023;13:1132344. https://doi.org/10.3389/fonc.2023.1132344.

[10]

Ji Y, Chen S, Yang K et al. Efficacy and Safety of Propranolol vs Atenolol in Infants With Problematic Infantile Hemangiomas: A Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2021;147:599-607. https://doi.org/10.1001/jamaoto.2021.0454.

[11]

Schoch JJ, Hunjan MK, Anderson KR et al. Temporal trends in prenatal risk factors for the development of infantile hemangiomas. Pediatr Dermatol 2018;35:787-91. https://doi.org/10.1111/pde.13659.

[12]

Wang C, Li Y, Xiang B et al. Quality of life in children with infantile hemangioma: a case control study. Health Qual Life Outcomes 2017;15:221. https://doi.org/10.1186/s12955-017-0772-z.

[13]

Khan ZA, Boscolo E, Picard A et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 2008;118:2592-9. https://doi.org/10.1172/JCI33493.

[14]

Li Y, Zhu X, Kong M et al. Three-Dimensional Microtumor Formation of Infantile Hemangioma-Derived Endothelial Cells for Mechanistic Exploration and Drug Screening. Pharmaceuticals (Basel) 2022;15:1393. https://doi.org/10.3390/ph15111393.

[15]

Yang K, Li X, Qiu T et al. Effects of propranolol on glucose metabolism in hemangioma-derived endothelial cells. Biochem Pharmacol 2023;218:115922. https://doi.org/10.1016/j.bcp.2023.115922.

[16]

Liu Y, Zeng S, Jiang X et al. SOX4 induces tumor invasion by targeting EMT-related pathway in prostate cancer. Tumor Biol 2017;39:1010428317694539. https://doi.org/10.1177/1010428317694539.

[17]

Blancato J, Singh B, Liu A et al. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridization and immunohistochemical analyses. Br J Cancer 2004;90:1612-9. https://doi.org/10.1038/sj.bjc.6601703.

[18]

Huang P, Deng W, Bao H et al. SOX4 facilitates PGR protein stability and FOXO 1 expression conducive for human endometrial decidualization. eLife 2022;11:e72073. https://doi.org/10.7554/eLife.72073.

[19]

Hanieh H, Ahmed EA, Vishnubalaji R et al. SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 2020;67:91104. https://doi.org/10.1016/j.semcancer.2019.06.022.

[20]

Tsai CN, Yu SC, Lee CW et al. SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo. Oncogene 2020;39:4695-710. https://doi.org/10.1038/s41388-020-1319-z.

[21]

Bagati A, Kumar S, Jiang P et al. Integrinα vβ6-TGFβ-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 2021;39:54-67.e9. https://doi.org/10.1016/j.ccell.2020.12.001.

[22]

Wang H, Huo X, Yang XR et al. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol Cancer 2017;16:136. https://doi.org/10.1186/s12943-017-0680-1.

[23]

Bellmunt J. Stem-Like Signature Predicting Disease Progression in Early Stage Bladder Cancer. The Role of E2F3 and SOX4. Biomedicines 2018;6:85. https://doi.org/10.3390/biomedicines6030085.

[24]

Xu G, Meng Y, Wang L et al. miRNA-214-5p inhibits prostate cancer cell proliferation by targeting SOX4. World J Surg Oncol 2021;19:338. https://doi.org/10.1186/s12957-021-02449-2.

[25]

Moreno CS. SOX4: The unappreciated oncogene. Semin Cancer Biol 2020;67:57-64. https://doi.org/10.1016/j.semcancer.2019.08.027.

[26]

Yang Q, Liang Y, Shi Y et al. The ALKBH5/SOX4 axis promotes liver cancer stem cell properties via activating the SHH signaling pathway. J Cancer Res Clin Oncol 2023;149:15499-510. https://doi.org/10.1007/s00432-023-05309-6.

[27]

Tian D, Luo L, Wang T., et al. MiR-296-3p inhibits cell proliferation by the SOX4-Wnt/β catenin pathway in triple-negative breast cancer. J Biosci 2021;46:98. https://doi.org/10.1007/s12038-021-00219-6.

[28]

Kang Y, Lv R, Feng Z et al. Tumor-associated macrophages improve hypoxia-induced endoplasmic reticulum stress response in colorectal cancer cells by regulating TGF- β1/SOX4. Cell Signal 2022;99:110430. https://doi.org/10.1016/j.cellsig.2022.110430.

[29]

Yang K, Qiu T, Zhou J et al. Blockage of glycolysis by targeting PFKFB 3 suppresses the development of infantile hemangioma. J Transl Med 2023;21:85. https://doi.org/10.1186/s12967-023-03932-y.

[30]

Wang S, Ren L, Shen G et al. The knockdown of MALAT 1 inhibits the proliferation, invasion and migration of hemangioma endothelial cells by regulating MiR-206/VEGFA axis. Mol Cell Probes 2020;51:101540. https://doi.org/10.1016/j.mcp.2020.101540.

[31]

Zhu X, Li Y, Long H et al. Tissue-specific micropattern array chips fabricated via decellularized ECM for 3D cell culture. MethodsX 2023;11:102463. https://doi.org/10.1016/j.mex.2023.102463.

[32]

Lv Y, Xie X, Zou G et al. miR-181b-5p/SOCS2/JAK2/STAT5 axis facilitates the metastasis of hepatoblastoma. Precis Clin Med 2023;6:pbad027. https://doi.org/10.1093/pcmedi/pbad027.

[33]

Lv Y, Xie X, Zou G et al. SOCS 2 inhibits hepatoblastoma metastasis via downregulation of the JAK2/STAT5 signaling pathway. Sci Rep 2023;13:21814. https://doi.org/10.1038/s41598-023-48591-7.

[34]

Dong X, He Y, An J et al. Increased apoptosis of gingival epithelium is associated with impaired autophagic flux in medicationrelated osteonecrosis of the jaw. Autophagy 2023;19:2899-911. https://doi.org/10.1080/15548627.2023.2234228.

[35]

Ren R, Ding S, Ma K et al. Sumoylation fine-tunes endothelial HEY 1 in the regulation of angiogenesis. Circ Res 2024;134:20322. https://doi.org/10.1161/CIRCRESAHA.123.323398.

[36]

Zhu F, Jing D, Zhou H et al. Blockade of Syk modulates neutrophil immune-responses via the mTOR/RUBCNL-dependent autophagy pathway to alleviate intestinal inflammation in ulcerative colitis. Precis Clin Med 2023;6:pbad025. https://doi.org/10.1093/pcmedi/pbad025.

[37]

Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2022;50:D165-73. https://doi.org/10.1093/nar/gkab1113.

[38]

Xing Z, Du M, Zhen Y et al. LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis: A protective mechanism in the pathogenesis of atherosclerosis. Cell Signal 2023;112:110907. https://doi.org/10.1016/j.cellsig.2023.110907.

[39]

Yang K, Zhang X, Chen L et al. Microarray expression profile of mRNAs and long noncoding RNAs and the potential role of PFK 1 in infantile hemangioma. Cell Div 2021;16:1. https://doi.org/10.1186/s13008-020-00069-y.

[40]

Smith CJF, Friedlander SF, Guma M et al. Infantile Hemangiomas: An Updated Review on Risk Factors, Pathogenesis, and Treatment. Birth Defects Res 2017;109:809-15. https://doi.org/10.1002/bdr2.1023.

[41]

Sun Y, Qiu F, Hu C et al. Hemangioma Endothelial Cells and Hemangioma Stem Cells in Infantile Hemangioma. Ann Plast Surg 2022;88:244-9. https://doi.org/10.1097/SAP.0000000000002835.

[42]

Wu Y, Yang X, Zhai M et al. Real-time optical imaging of the hypoxic status in hemangioma endothelial cells during propranolol therapy. Front Oncol 2022;12:995745. https://doi.org/10.3389/fonc.2022.995745.

[43]

Gong X, Li Y, Yang K et al. Infantile hepatic hemangiomas: looking backwards and forwards. Precis Clin Med 2022;5:pbac006. https://doi.org/10.1093/pcmedi/pbac006.

[44]

Gong X, Qiu T, Feng L et al. Maternal and Perinatal Risk Factors for Infantile Hemangioma: A Matched Case-Control Study with a Large Sample Size. Dermatol Ther (Heidelb) 2022;12:1659-70. https://doi.org/10.1007/s13555-022-00756-4.

[45]

Schilham MW, Oosterwegel MA, Moerer P et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 1996;380:711-4. https://doi.org/10.1038/380711a0.

[46]

Zhang J, Liang Q, Lei Y et al. SOX4 induces epithelialmesenchymal transition and contributes to breast cancer progression. Cancer Res 2012;72:4597-608. https://doi.org/10.1158/0008-5472.CAN-12-1045.

[47]

Wang D, Hao T, Pan Y et al. Increased expression of SOX4 is a biomarker for malignant status and poor prognosis in patients with non-small cell lung cancer. Mol Cell Biochem 2015;402:75-82. https://doi.org/10.1007/s11010-014-2315-9.

[48]

Ikushima H, Todo T, Ino Y et al. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sryrelated HMG-box factors. Cell Stem Cell 2009;5:504-14. https://doi.org/10.1016/j.stem.2009.08.018.

[49]

Vervoort SJ, van Boxtel R, Coffer PJ. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene 2013;32:3397-409. https://doi.org/10.1038/onc.2012.506.

[50]

Aaboe M, Birkenkamp-Demtroder K, Wiuf C et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 2006;66:3434-42. https://doi.org/10.1158/0008-5472.CAN-05-3456.

[51]

Zhang J, Jiang H, Shao J et al. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p 53 axis. BMC Neurol 2014;14:207. https://doi.org/10.1186/s12883-014-0207-y.

[52]

Li X, Chen Y, Fu C et al. Characterization of epigenetic and transcriptional landscape in infantile hemangiomas with ATAC-seq and RNA-seq. Epigenomics 2020;12:893-905. https://doi.org/10.2217/epi-2020-0060.

[53]

Ji Y, Chen S, Li K et al. Signaling pathways in the development of infantile hemangioma. J Hematol Oncol 2014;7:13. https://doi.org/10.1186/1756-8722-7-13.

[54]

Ke C, Chen C, Yang M et al. Inhibition of infantile hemangioma growth and promotion of apoptosis via VEGF/PI3K/Akt axis by 755-nm long-pulse alexandrite laser. Biomed J 2023;47:100675. https://doi.org/10.1016/j.bj.2023.100675.

[55]

Pan WK, Li P, Guo ZT et al. Propranolol induces regression of hemangioma cells via the down-regulation of the PI3K/Akt/eNOS/VEGF pathway. Pediatr Blood Cancer 2015;62:1414-20. https://doi.org/10.1002/pbc.25453.

[56]

Mehta GA, Parker JS, Silva GO et al. Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer. Breast Cancer Res Treat 2017;162:439-50. https://doi.org/10.1007/s10549-017-4139-2.

[57]

Ramezani-Rad P, Geng H, Hurtz C et al. SOX4 enables oncogenic survival signals in acute lymphoblastic leukemia. Blood 2013;121:148-55. https://doi.org/10.1182/blood-2012-05428938.

[58]

Xu X, Zong K, Wang X et al. miR-30d suppresses proliferation and invasiveness of pancreatic cancer by targeting the SOX4/PI3KAKT axis and predicts poor outcome. Cell Death Dis 2021;12:350. https://doi.org/10.1038/s41419-021-03576-0.

[59]

Li D, Wang D, Liu H et al. LEM domain containing 1 (LEMD1) transcriptionally activated by SRY-related high-mobility-group box 4 (SOX4) accelerates the progression of colon cancer by upregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Bioengineered 2022;13:8087-100. https://doi.org/10.1080/21655979.2022.2047556.

[60]

Sarrazin S, Adam E, Lyon M et al. Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta 2006;1765:25-37. https://doi.org/10.1016/j.bbcan.2005.08.004.

[61]

Calderaro J, Meunier L, Nguyen CT et al. ESM1 as a Marker of Macrotrabecular-Massive Hepatocellular Carcinoma. Clin Cancer Res 2019;25:5859-65. https://doi.org/10.1158/1078-0432.CCR-19-0859.

[62]

Liu W, Yang Y, He B et al. ESM1 promotes triple-negative breast cancer cell proliferation through activating AKT/NF-κB/Cyclin D1 pathway. Ann Transl Med 2021;9:533. https://doi.org/10.21037/atm-20-7005.

[63]

Cui Y, Guo W, Li Y et al. Pancancer analysis identifies ESM1 as a novel oncogene for esophageal cancer. Esophagus 2021;18:32638. https://doi.org/10.1007/s10388-020-00796-9.

[64]

Xu H, Chen X, Huang Z. Identification of ESM1 overexpressed in head and neck squamous cell carcinoma. Cancer Cell Int 2019;19:118. https://doi.org/10.1186/s12935-019-0833-y.

[65]

Lu J, Liu Q, Zhu L et al. Endothelial cell-specific molecule 1 drives cervical cancer progression. Cell Death Dis 2022;13:1043. https://doi.org/10.1038/s41419-022-05501-5.

[66]

Yang L, Dong Z, Li S et al. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY) 2023;15:292036. https://doi.org/10.18632/aging.204559.

[67]

Cai L, Leng ZG, Guo YH et al. Dopamine agonist resistancerelated endocan promotes angiogenesis and cells viability of prolactinomas. Endocrine 2016;52:641-51. https://doi.org/10.1007/s12020-015-0824-2.

[68]

Di Martino JS, Mondal C, Bravo-Cordero JJ. Textures of the tumor microenvironment. Essays Biochem 2019,63:619-29. https://doi.org/10.1042/EBC20190019.

[69]

Roudnicky F, Poyet C, Wild P et al. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res 2013;73:1097-106. https://doi.org/10.1158/0008-5472.CAN-12-1855.

[70]

Rocha SF, Schiller M, Jing D et al. Esm 1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ Res 2014;115:581-90. https://doi.org/10.1161/CIRCRESAHA.115.304718.

[71]

Selvam S, Midhun BT, Bhowmick T et al. Bioprinting of exosomes: Prospects and challenges for clinical applications. Int J Bioprint 2023;9:690. https://doi.org/10.18063/ijb.690.

AI Summary AI Mindmap
PDF (2227KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/