Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus

Yong Ling Sou , William M. Chilian , Wickneswari Ratnam , Shamsul Mohd Zain , Sharifah Zamiah Syed Abdul Kadir , Yan Pan , Yuh-Fen Pung

Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (3) : pbae021

PDF (1173KB)
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (3) :pbae021 DOI: 10.1093/pcmedi/pbae021
Review
research-article

Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus

Author information +
History +
PDF (1173KB)

Abstract

Type 2 diabetes mellitus (T2DM) is a metabolic disease that is characterized by chronic hyperglycaemia. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play important roles in post-transcriptional gene regulation. They are negative regulators of their target messenger RNAs (mRNAs), in which they bind either to inhibit mRNA translation, or to induce mRNA decay. Similar to proteins, miRNAs exist in different isoforms (isomiRs). miRNAs and isomiRs are selectively loaded into small extracellular vesicles, such as the exosomes, to protect them from RNase degradation. In T2DM, exosomal miRNAs produced by different cell types are transported among the primary sites of insulin action. These interorgan crosstalk regulate various T2DM-associated pathways such as adipocyte inflammation, insulin signalling, and β cells dysfunction among many others. In this review, we first focus on the mechanism of exosome biogenesis, followed by miRNA biogenesis and isomiR formation. Next, we discuss the roles of exosomal miRNAs and isomiRs in the development of T2DM and provide evidence from clinical studies to support their potential roles as T2DM biomarkers. Lastly, we highlight the use of exosomal miRNAs and isomiRs in personalized medicine, as well as addressing the current challenges and future opportunities in this field. This review summarizes how research on exosomal miRNAs and isomiRs has developed from the very basic to clinical applications, with the goal of advancing towards the era of personalized medicine.

Keywords

extracellular vesicles / insulin resistance / hyperglycaemia / obesity / precision medicine

Cite this article

Download citation ▾
Yong Ling Sou, William M. Chilian, Wickneswari Ratnam, Shamsul Mohd Zain, Sharifah Zamiah Syed Abdul Kadir, Yan Pan, Yuh-Fen Pung. Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus. Precision Clinical Medicine, 2024, 7(3): pbae021 DOI:10.1093/pcmedi/pbae021

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work is funded by the Malaysia Ministry of Science, Technology, and Innovation (MOSTI) (Grant No. RD0120Q1410) awarded to YFP and WR, and the postgraduate student scholarships awarded by the University of Nottingham Malaysia to YLS.

Authors’ contributions

YLS and YFP made substantial contributions to the conceptualization of the paper. YLS drafted the manuscript and figures. YFP, WMC, WR, and YP provided supervision support. YFP and WR involved in funding acquisition. WMC, WR, SMZ, SZSAK, YP, and YFP reviewed and edited the manuscript. All authors gave their approval of the version to be published.

Conflict of interests

All authors declared that there are no conflict of interests.

References

[1]

Evans RM, Wei Z. Interorgan crosstalk in pancreatic islet function and pathology. FEBS Lett 2022;596:607-19. https://doi.org/10.1002/1873-3468.14282.

[2]

Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024;20:27-49. https://doi.org/10.1038/s41574-023-00898-1.

[3]

Hofmann L, Medyany V, Ezić J et al. Cargo and functional profile of saliva-derived exosomes reveal biomarkers specific for head and neck cancer. Front Med (Lausanne) 2022;9:904295. https://doi.org/10.3389/fmed.2022.904295.

[4]

Martins TS, Catita J, Rosa IM et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 2018;13:e0198820. https://doi.org/10.1371/journal.pone.0198820.

[5]

Melnik BC, Stremmel W, Weiskirchen R et al. Exosome-derived micrornas of human milk and their effects on infant health and development. Biomolecules 2021;11:851. https://doi.org/10.3390/biom11060851.

[6]

Cocozza F, Grisard E, Martin-Jaular L et al. SnapShot: extracellular vesicles. Cell 2020;182:262. https://doi.org/10.1016/j.cell.2020.04.054.

[7]

Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016;126:1208-15. https://doi.org/10.1172/JCI81135.

[8]

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-83. https://doi.org/10.1083/jcb.201211138.

[9]

Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019;42:226-39. https://doi.org/10.1080/01478885.2019.1646984.

[10]

Liu T, Zhang Q, Zhang J et al. EVmiRNA: A database of MiRNA profiling in extracellular vesicles. Nucleic Acids Res 2019;47:D8993. https://doi.org/10.1093/nar/gky985.

[11]

Crescitelli R, Lässer C, Szabó TG et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013;2:20677. https://doi.org/10.3402/jev.v2i0.20677.

[12]

Raijmakers R, Schilders G, Pruijn GJM. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. EurJ Cell Biol 2004;83:175-83. https://doi.org/10.1078/0171-9335-00385.

[13]

LaCava J, Houseley J, Saveanu C et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005;121:713-24. https://doi.org/10.1016/j.cell.2005.04.029.

[14]

Shrivastava S, Morris KV, Urbanelli L et al. The multifunctionality of exosomes; from the garbage bin of the cell to a next generation gene and cellular therapy. Genes (Basel) 2021;2:173. https://doi.org/10.3390/genes.

[15]

Rashed MH, Bayraktar E, Helal GK et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 2017;18:538. https://doi.org/10.3390/ijms18030538.

[16]

Nagarajah S. Exosome secretion-More than simple waste disposal? Implications for physiology, diagnostics and therapeutics. J Circ Biomark 2016;5:7. https://doi.org/10.5772/62975.

[17]

Wang W, Zhu N, Yan T et al. The crosstalk: exosomes and lipid metabolism. Cell Comm Signal 2020;18:119. https://doi.org/10.1186/s12964-020-00581-2.

[18]

Wei H, Chen Q, Lin L et al. Regulation of exosome production and cargo sorting. Int J Biol Sci 2020;17:163-77. https://doi.org/10.7150/ijbs.53671.

[19]

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367:eaau6977. https://doi.org/10.1126/science.aau6977.

[20]

Turchinovich A, Weiz L, Burwinkel B. Extracellular MiRNAs: the mystery of their origin and function. Trends Biochem Sci 2012;37:460-5. https://doi.org/10.1016/j.tibs.2012.08.003.

[21]

Wu Q, Li L, Jia Y et al. Advances in studies of circulating MicroRNAs: origination, transportation, and distal target regulation. J Cell Commun Signal 2022;17:445-55. https://doi.org/10.1007/s12079-022-00705-y.

[22]

Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol 2019;15:731-43. https://doi.org/10.1038/s41574-019-0260-0.

[23]

Tricarico C, Clancy J, D'Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases 2017;8:220-32. https://doi.org/10.1080/21541248.2016.1215283.

[24]

Santavanond JP, Rutter SF, Atkin-Smith GK et al. Apoptotic bodies: mechanism of formation, isolation and functional relevance. Subcell Biochem 2021;97:61-88. https://doi.org/10.1007/978-3-030-67171-6_4.

[25]

Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol 2014;31:2-10. https://doi.org/10.1016/j.semcdb.2014.03.034.

[26]

Mashouri L, Yousefi H, Aref AR et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 2019;18:75. https://doi.org/10.1186/s12943-019-0991-5.

[27]

Juan T, Fürthauer M. Biogenesis and function of ESCRTdependent extracellular vesicles. Semin Cell Dev Biol 2018;74:6677. https://doi.org/10.1016/j.semcdb.2017.08.022.

[28]

Harada Y, Suzuki T, Fukushige T et al. Generation of the heterogeneity of extracellular vesicles by membrane organization and sorting machineries. Biochim Biophys Acta 2019;1863:68191. https://doi.org/10.1016/j.bbagen.2019.01.015.

[29]

Song L, Tang S, Han X et al. KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a. Nat Commun 2019;10:1639. https://doi.org/10.1038/s41467-019-09720-X.

[30]

Wei D, Zhan W, Gao Y et al. RAB 31 marks and controls an ESCRT-independent exosome pathway. Cell Res 2021;31:157-77. https://doi.org/10.1038/s41422-020-00409-1.

[31]

Baietti MF, Zhang Z, Mortier E et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012;14:67785. https://doi.org/10.1038/ncb2502.

[32]

Ghossoub R, Lembo F, Rubio A et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 2014;5:3477. https://doi.org/10.1038/ncomms4477.

[33]

Eitan E, Suire C, Zhang S et al. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016;32;65-74. https://doi.org/10.1016/j.arr.2016.05.001.

[34]

Trajkovic K, Hsu C, Chiantia S et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319:1244-7. https://doi.org/10.1126/SCIENCE.1153124.

[35]

Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2015;290:3455-67. https://doi.org/10.1074/jbc.M114.605253.

[36]

Etheridge A, Lee I, Hood L et al. Extracellular microRNA: A new source of biomarkers. Mutat Res 2011;717:85-90. https://doi.org/10.1016/j.mrfmmm.2011.03.004.

[37]

Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014;5:442. https://doi.org/10.3389/fimmu.2014.00442.

[38]

Buschow SI, Nolte-'t Hoen ENM, Van Niel G et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 2009;10:152842. https://doi.org/10.1111/j.1600-0854.2009.00963.x.

[39]

Stuffers S, Sem Wegner C, Stenmark H et al. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009;10:925-37. https://doi.org/10.1111/j.1600-0854.2009.00920.x.

[40]

Friedman RC, Farh KKH, Burge CB et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105. https://doi.org/10.1101/gr.082701.108.

[41]

Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011;12:99-110. https://doi.org/10.1038/nrg2936.

[42]

Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012;13:271-82. https://doi.org/10.1038/nrg3162.

[43]

Chipman LB, Pasquinelli AE. MiRNA targeting: growing beyond the seed. Trend Genet 2019;35:215-22. https://doi.org/10.1016/j.tig.2018.12.005.

[44]

Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012;13:358-69. https://doi.org/10.1038/nrg3198.

[45]

Wilk G, Braun R. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. Nucleic Acids Res 2018;46:1089-101. https://doi.org/10.1093/nar/gkx1250.

[46]

Peter ME. Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 2010;29:2161-4. https://doi.org/10.1038/onc.2010.59.

[47]

Broughton JP, Lovci MT, Huang JL et al. Pairing beyond the seed supports microRNA targeting specificity HHS public access. Mol Cell 2016;64:320-33. https://doi.org/10.1016/j.molcel.2016.09.004.

[48]

Wu S, Huang S, Ding J et al. Multiple microRNAs modulate P21Cip1/Waf1 expression by directly targeting its 3' untranslated region. Oncogene 2010;29:2302-8. https://doi.org/10.1038/onc.2010.34.

[49]

Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res 2019;47:D15562. https://doi.org/10.1093/nar/gky1141.

[50]

Gómez-Martín C, Aparicio-Puerta E, van Eijndhoven MAJ et al. Reassessment of miRNA variant (isomiRs) composition by small RNA sequencing. Cell Rep Methods 2023;3:100480. https://doi.org/10.1016/j.crmeth.2023.100480.

[51]

Sanchez Herrero JF, Pluvinet R,Luna de Haro A et al. Pairedend small RNA sequencing reveals a possible overestimation in the isomiR sequence repertoire previously reported from conventional single read data analysis. BMC Bioinf 2021;22:215. https://doi.org/10.1186/s12859-021-04128-1.

[52]

Laganà A, Ferro A, Croce CM. Editorial: bioinformatics of non-coding RNAs with applications to biomedicine: recent advances and open challenges. Front Bioeng Biotechnol 2015;3:156. https://doi.org/10.3389/fbioe.2015.00156.

[53]

Tan GC, Chan E, Molnar A et al. 5' IsomiR variation is of functional and evolutionary importance. Nucleic Acids Res 2014;42:9424-35. https://doi.org/10.1093/nar/gku656.

[54]

Hammond SM. An overview of microRNAs. Adu Drug Deliv Rev 2015;87:3-14. https://doi.org/10.1016/j.addr.2015.05.001.

[55]

Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019;25:1-16. https://doi.org/10.1261/ma.068692.118.

[56]

Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci 2020;21:132. https://doi.org/10.3390/ijms21010132.

[57]

Zhiyanov A, Nersisyan S, Tonevitsky A. Hairpin sequence and structure is associated with features of isomiR biogenesis. RNA Biol 2021;18:430-8. https://doi.org/10.1080/15476286.2021.1952759.

[58]

Nguyen TL, Nguyen TD, Nguyen TA. The conserved singlecleavage mechanism of animal DROSHA enzymes. Commun Biol 2021;4:1332. https://doi.org/10.1038/s42003-021-02860-1.

[59]

Warf MB, Johnson WE, Bass BL. Improved annotation of C. elegans microRNAs by deepsequencing reveals structures associated with processingby Drosha and Dicer. RNA 2011;17:563-77. https://doi.org/10.1261/rna.2432311.

[60]

Starega-Roslan J, Krol J, Koscianska E et al. Structural basis of microRNA length variety. Nucleic Acids Res 2011;39:257-68. https://doi.org/10.1093/nar/gkq727.

[61]

Nguyen TD, Trinh TA, Bao S et al. Secondary structure RNA elements control the cleavage activity of DICER. Nat Commun 2022;13:2138. https://doi.org/10.1038/s41467-022-29822-3.

[62]

Li S, Le TNY, Nguyen TD et al. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol 2021;18:1716-26. https://doi.org/10.1080/15476286.2020.1868139.

[63]

Choi H, Mun JY. Structural analysis of exosomes using different types of electron microscopy. Appl Microsc 2017;47:171-5. https://doi.org/10.9729/am.2017.47.3.171.

[64]

Manzano M, Forte E, Raja AN et al. Divergent target recognition by coexpressed 5' -isomiRs of MiR-142-3p and selective viral mimicry. RNA 2015;21:1606-20. https://doi.org/10.1261/rna.048876.114.

[65]

Ma H, Wu Y, Niu Q et al. A sliding-bulge structure at the dicer processing site of pre-miRNAs regulates alternative dicer processing to generate 5́-isomiRs. Heliyon 2016;2:e00148. https://doi.org/10.1016/j.heliyon.2016.e00148.

[66]

Starega-Roslan J, Witkos TM, Galka-Marciniak P et al. Sequence features of drosha and dicer cleavage sites affect the complexity of isomiRs. Int J Mol Sci 2015;16:8110-27. https://doi.org/10.3390/ijms16048110.

[67]

Starega-Roslan J, Galka-Marciniak P, Krzyzosiak WJ. Nucleotide sequence of miRNA precursor contributes to cleavage site selection by dicer. Nucleic Acids Res 2015;43:10939-51. https://doi.org/10.1093/nar/gkv968.

[68]

Han BW, Hung JH, Weng Z et al. The 3'-to-5' exoribonuclease nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 2011;21:1878-87. https://doi.org/10.1016/j.cub.2011.09.034.

[69]

Burroughs AM, Ando Y,De Hoon MJL et al. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res 2010;20:1398-410. https://doi.org/10.1101/gr.106054.110.

[70]

Neilsen CT, Goodall GJ, Bracken CP. IsomiRs-The overlooked repertoire in the dynamic microRNAome. Trend Genet 2012;28:544-9. https://doi.org/10.1016/j.tig.2012.07.005.

[71]

Knouf EC, Wyman SK, Tewari M. The human TUT1 nucleotidyl transferase as a global regulator of microRNA abundance. PLoS One 2013;8:e69630. https://doi.org/10.1371/journal.pone.0069630.

[72]

Yang A, Bofill-De Ros X, Shao TJ et al. 3' Uridylation confers miRNAs with non-canonical target repertoires. Mol Cell 2019;75:511-22. https://doi.org/10.1016/j.molcel.2019.05.014.

[73]

Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 2014;8:1649-58. https://doi.org/10.1016/j.celrep.2014.08.027.

[74]

Brümmer A, Yang Y, Chan TW et al. Structure-mediated modulation of mRNA abundance by A-to-I editing. Nat Commun 2017;8:1255. https://doi.org/10.1038/s41467-017-01459-7.

[75]

Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol 2016;17:83-96. https://doi.org/10.1038/nrm.2015.4.

[76]

Kawahara Y, Megraw M, Kreider E et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 2008;36:5270-80. https://doi.org/10.1093/nar/gkn479.

[77]

Kawahara Y, Zinshteyn B, Sethupathy P et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 2007;315:1137-40. https://doi.org/10.1126/science.1138050.

[78]

Trontti K, Väänänen J, Sipilä T et al. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression. RNA 2018;24:643-55. https://doi.org/10.1261/rna.064881.117.

[79]

Wang Y, Ru J, Meng X et al. Role of SNPs in the biogenesis of mature miRNAs. Biomed Res Int 2021;2021:2403418. https://doi.org/10.1155/2021/2403418.

[80]

Sun G, Yan J, Noltner K et al. SNPs in human mirna genes affect biogenesis and function. RNA 2009;15:1640-51. https://doi.org/10.1261/rna.1560209.

[81]

Zhang J, Li S, Li L et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015;13:17-24. https://doi.org/10.1016/j.gpb.2015.02.001.

[82]

He X, Kuang G, Wu Y et al. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med 2021;11:e468. https://doi.org/10.1002/ctm2.468.

[83]

Kim H, Bae YU, Lee H et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Res Care 2020;8:e001403. https://doi.org/10.1136/bmjdrc-2020001403.

[84]

Castaño C, Kalko S, Novials A et al. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci USA 2018;115:12158-63. https://doi.org/10.1073/pnas.1808855115.

[85]

Zapała B, Kamińska A, Piwowar M et al. MiRNA signature of urine extracellular vesicles shows the involvement of inflammatory and apoptotic processes in diabetic chronic kidney disease. Pharm Res 2023;40:817-32. https://doi.org/10.1007/s11095-023-03481-5.

[86]

Sinha N, Puri V, Kumar V et al. Urinary exosomal miRNA-663a shows variable expression in diabetic kidney disease patients with or without proteinuria. Sci Rep 2023;13:4516. https://doi.org/10.1038/s41598-022-26558-4.

[87]

Valadi H, Ekström K, Bossios A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9:654-9. https://doi.org/10.1038/ncb1596.

[88]

Valencia K, Luis-Ravelo D, Bovy N et al. MiRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 2014;8:689-703. https://doi.org/10.1016/j.molonc.2014.01.012.

[89]

Kosaka N, Iguchi H, Yoshioka Y et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010;285:17442-52. https://doi.org/10.1074/jbc.M110.107821.

[90]

Horwitz A, Birk R. Adipose tissue hyperplasia and hypertrophy in common and syndromic obesity-The case of BBS obesity. Nutrients 2023;15:3445. https://doi.org/10.3390/nu15153445.

[91]

Yu Y, Du H, Wei S et al. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of ppar γ. Theranostics 2018;8:2171-88. https://doi.org/10.7150/thno.22565.

[92]

Huang XY, Chen JX, Ren Y et al. Exosomal MiR-122 promotes adipogenesis and aggravates obesity through the VDR/SREBF1 axis. obes 2022;30:666-79. https://doi.org/10.1002/oby.23365.

[93]

Ojima K, Muroya S, Wada H et al. Immature adipocyte-derived exosomes inhibit expression of muscle differentiation markers. FEBS Open Bio 2021;11:768-81. https://doi.org/10.1002/2211-5463.13100.

[94]

Zhang Y, Mei H, Chang X et al. Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted MiR-155. J Mol Cell Biol 2016;8:505-17. https://doi.org/10.1093/jmcb/mjw040.

[95]

Pan Y, Hui X,Chong Hoo RL et al. Adipocyte-secreted exosomal MicroRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 2019;129:834-49. https://doi.org/10.1172/JCI123069.

[96]

Zhang D, Yao X, Teng Y et al. Adipocytes-derived exosomal MicroRNA-1224 inhibits M2 macrophage polarization in obesity-induced adipose tissue inflammation via MSI2-mediated wnt/β-catenin axis. Mol Nutr Food Res 2022;66:e2100889. https://doi.org/10.1002/mnfr.202100889.

[97]

Gesmundo I, Pardini B, Gargantini E et al. Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic β cells. JCI Insight 2021;6:e141962. https://doi.org/10.1172/jci.insight.141962.

[98]

Wang D, Zhang X, Li Y et al. Exercise-induced browning of white adipose tissue and improving skeletal muscle insulin sensitivity in obese/non-obese growing mice: do not neglect exosomal MiR-27a. Front Nutr 2022;9:940673. https://doi.org/10.3389/fnut.2022.940673.

[99]

Sadeghzadeh S, Ashkezari MD, Seifati SM et al. Circulating Mir15a and Mir-222 as potential biomarkers of type 2 diabetes. Diabetes Metab Syndr Obes 2020;13:3461-9. https://doi.org/10.2147/DMSO.S263883.

[100]

Thomou T, Mori MA, Dreyfuss JM et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017;542:450-5. https://doi.org/10.1038/nature21365.

[101]

Dang SY, Leng Y, Wang ZX et al. Exosomal transfer of obesity adipose tissue for decreased MiR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci 2019;15:351-68. https://doi.org/10.7150/ijbs.28522.

[102]

Wen Z, Li J, Fu Y et al. Hypertrophic adipocyte-derived exosomal MiR-802-5p contributes to insulin resistance in cardiac myocytes through targeting HSP60. Obesity 2020;28:1932-40. https://doi.org/10.1002/oby.22932.

[103]

Ying W, Riopel M, Bandyopadhyay G et al. Adipose tissue macrophage-derived exosomal MiRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 2017;171:372-84. https://doi.org/10.1016/j.cell.2017.08.035.

[104]

Gao H, Luo Z, Jin Z et al. Adipose tissue macrophages modulate obesity-associated β cell adaptations through secreted MiRNAcontaining extracellular vesicles. Cells 2021;10:2451. https://doi.org/10.3390/cells10092451.

[105]

Zhang Y, Cong R, Lv T et al. Islet-resident macrophage-derived MiR-155 promotes β cell decompensation via targeting PDX1. iScience 2024;27:109540. https://doi.org/10.1016/j.isci.2024.109540.

[106]

Tian F, Tang P, Sun Z et al. MiR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression. J Diabetes Res 2020;2020:6894684. https://doi.org/10.1155/2020/6894684.

[107]

Chen X, Tian F, Sun Z et al. Elevation of circulating MiR210 participates in the occurrence and development of type 2 diabetes mellitus and its complications. J Diabetes Res 2022;2022:9611509. https://doi.org/10.1155/2022/9611509.

[108]

Liu T, Sun YC, Cheng P et al. Adipose tissue macrophage-derived exosomal MiR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun 2019;515:352-8. https://doi.org/10.1016/j.bbrc.2019.05.113.

[109]

De Silva N, Samblas M, Martínez JA et al. Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake. J Physiol Biochem 2018;74:559-68. https://doi.org/10.1007/s13105-018-0622-4.

[110]

Ying W, Gao H,Dos Reis FCG et al. MiR-690, an exosomalderived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab 2021;33:781-90. https://doi.org/10.1016/j.cmet.2020.12.019.

[111]

Li L, Zuo H, Huang X et al. Bone marrow macrophage-derived exosomal MiR-143-5p contributes to insulin resistance in hepatocytes by repressing MKP5. Cell Prolif 2021;54:e13140. https://doi.org/10.1111/cpr.13140.

[112]

Qian B, Yang Y, Tang N et al. M1 macrophage-derived exosomes impair beta cell insulin secretion via MiR-212-5p by targeting SIRT2 and inhibiting Akt/GSK-3β/β-catenin pathway in mice. Diabetologia 2021;64:2037-51. https://doi.org/10.1007/s00125-021-05489-1.

[113]

Guay C, Kruit JK, Rome S et al. Lymphocyte-derived exosomal micrornas promote pancreatic β cell death and may contribute to type 1 diabetes development. Cell Metab 2019;29:348-61. https://doi.org/10.1016/j.cmet.2018.09.011.

[114]

Wang Y, Li M, Chen L et al. Natural killer cell-derived exosomal MiR-1249-3p attenuates insulin resistance and inflammation in mouse models of type 2 diabetes. Signal Transduct Target Ther 2021;6:409. https://doi.org/10.1038/s41392-021-00805-y.

[115]

Jalabert A, Vial G, Guay C et al. Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 2016;59:1049-58. https://doi.org/10.1007/s00125-016-3882-y.

[116]

Qin M, Xing L, Wu J et al. Skeletal muscle-derived exosomal MiR-146a-5p inhibits adipogenesis by mediating muscle-fat axis and targeting GDF5-ppar γ signaling. Int J Mol Sci 2023;24:4561. https://doi.org/10.3390/ijms24054561.

[117]

Castaño C, Mirasierra M, Vallejo M et al. Delivery of musclederived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci USA 2020;117:30335-43. https://doi.org/10.1073/pnas. 2016112117.

[118]

Wu J, Dong T, Chen T et al. Hepatic exosome-derived MiR-130a3p attenuates glucose intolerance via suppressing PHLPP 2 gene in adipocyte. Metabolism 2020;103:154006. https://doi.org/10.1016/j.metabol.2019.154006.

[119]

Fu Q, Li Y, Jiang H et al. Hepatocytes derived extracellular vesicles from high-fat diet induced obese mice modulate genes expression and proliferation of islet β cells. Biochem Biophys Res Commun 2019;516:1159-66. https://doi.org/10.1016/j.bbrc.2019.06.124.

[120]

Ji Y, Luo Z, Gao H et al. Hepatocyte-derived exosomes from early onset obese mice promote insulin sensitivity through MiR-3075. Nat Metab 2021;3:1163-74. https://doi.org/10.1038/s42255-021-00444-1.

[121]

Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021;22:142-58. https://doi.org/10.1038/s41580-020-00317-7.

[122]

Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest 2006;116:1802-12. https://doi.org/10.1172/JCI29103.

[123]

Donath MY, Schumann DM, Faulenbach M et al. Islet inflammation in type 2 diabetes: from metabolic stress to therapy. Diabetes Care 2008;31:S161-4. https://doi.org/10.2337/dc08-s243.

[124]

Xu H, Du X, Xu J et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol 2020;18:e3000603. https://doi.org/10.1371/journal.pbio.3000603.

[125]

Fu Q, Jiang H, Wang Z et al. Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY) 2018;10:3986-99. https://doi.org/10.18632/aging.101689.

[126]

Saravanan PB, Vasu S, Yoshimatsu G et al. Differential expression and release of exosomal miRNAs by human islets under inflammatory and hypoxic stress. Diabetologia 2019;62:1901-14. https://doi.org/10.1007/s00125-019-4950-x.

[127]

Katayama M, Wiklander OPB, Fritz T et al. Circulating exosomal MiR-20b-5p is elevated in type 2 diabetes and could impair insulin action in human skeletal muscle. Diabetes 2019;68:515-26. https://doi.org/10.2337/db18-0470.

[128]

Chen K, Yu T, Wang X. Inhibition of circulating exosomal MiRNA-20b-5p accelerates diabetic wound repair. Int J Nanomedicine 2021;16:371-81. https://doi.org/10.2147/IJN.S287875.

[129]

Dracheva KV, Pobozheva IA, Anisimova KA et al. Downregulation of exosomal hsa-MiR-551b-3p in obesity and its link to type 2 diabetes mellitus. Noncoding RNA 2023;9:67. https://doi.org/10.3390/ncrna9060067.

[130]

Karlsen TA, Aae TF, Brinchmann JE. Robust profiling of microRNAs and isomiRs in human plasma exosomes across 46 individuals. Sci Rep 2019;9:199999. https://doi.org/10.1038/s41598-019-56593-7.

[131]

Telonis AG, Loher P, Jing Y et al. Beyond the one-locus-one-miRNA paradigm: MicroRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res 2015;43:9158-75. https://doi.org/10.1093/nar/gkv922.

[132]

Wagner V, Meese E, Keller A. The intricacies of isomiRs: from classification to clinical relevance. Trends Genet 2024; 40:784-96. https://doi.org/10.1016/j.tig.2024.05.007.

[133]

Wang S, Xu Y, Li M et al. Dysregulation of MiRNA isoform level at 5' end in Alzheimer's disease. Gene 2016;584:167-72. https://doi.org/10.1016/j.gene.2016.02.020.

[134]

Cao Z, Xu B, Wu Y et al. A comprehensive analysis of MiRNA/IsomiRs profile of hydrosalpinx patients with interventional ultrasound sclerotherapy. PLoS One 2022;17:e0268328. https://doi.org/10.1371/journal.pone.0268328.

[135]

Baran-Gale J, Fannin EE, Kurtz CL et al. Beta cell 5'-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS One 2013;8:e73240. https://doi.org/10.1371/journal.pone.0073240.

[136]

Sørgjerd EP, Mjelle R, Beisvåg V et al. Small RNAs are differentially expressed in autoimmune and non-autoimmune diabetes and controls. Eur J Endocrinol 2022;187:231-40. https://doi.org/10.1530/EJE-22-0083.

[137]

Yang L, Yang Z, Liu Z et al. Diagnostic value of plasma-derived exosomal MiR-223 for epithelial ovarian cancer. BMC Womens Health 2024;24:150. https://doi.org/10.1186/s12905-024-02976-6.

[138]

Wang F, Yang B, Qiao J et al. Serum exosomal microRNA-1258 may as a novel biomarker for the diagnosis of acute exacerbations of chronic obstructive pulmonary disease. Sci Rep 2023;13:18332. https://doi.org/10.1038/s41598-023-45592-4.

[139]

Serbis A, Giapros V, Kotanidou EP et al. Diagnosis, treatment and prevention of type 2 diabetes mellitus in children and adolescents. World J Diabetes 2021;12:344-65. https://doi.org/10.4239/wjd.v12.i4.344.

[140]

Yang G, Lun S, Yeung A et al. Sex differences in the association of fasting glucose with HbA 1 c, and their consequences for mortality: A mendelian randomization study. JSES Open Access 2017;1:139-40. https://doi.org/10.1016/j.ebiom.2022.104259.

[141]

Kirk JK, D'Agostino RB, Bell RA et al. Disparities in HbA1c levels between African-American and non-hispanic white adults with diabetes: A meta-analysis. Diabetes Care 2006;29:2130-6. https://doi.org/10.2337/dc05-1973.

[142]

Zhao Y, Shen A, Guo F et al. Urinary exosomal MiRNA-4534 as a novel diagnostic biomarker for diabetic kidney disease. Front Endocrinol (Lausanne) 2020;11:590. https://doi.org/10.3389/fendo.2020.00590.

[143]

Jiang L, Cao H, Deng T et al. Serum exosomal MiR-3773 p inhibits retinal pigment epithelium proliferation and offers a biomarker for diabetic macular edema. J Int Med Res 2021;49:3000605211002975. https://doi.org/10.1177/03000605211002975.

[144]

Wang S, Shi M, Zhou J et al. Circulating exosomal MiR-181b 5 p promoted cell senescence and inhibited angiogenesis to impair diabetic foot ulcer via the nuclear factor erythroid 2related factor 2/heme oxygenase-1 pathway. Front Cardiovasc Med 2022;9:844047. https://doi.org/10.3389/fcvm.2022.844047.

[145]

Karimi N, Dalirfardouei R, Dias T et al. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma-Contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles 2022;11:e12213. https://doi.org/10.1002/jev2.12213.

[146]

Bordanaba-Florit G, Royo F, Kruglik SG et al. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021;16:3163-85. https://doi.org/10.1038/s41596-021-00551-z.

[147]

Li Y, Zhang L, Liu F et al. Identification of endogenous controls for analyzing serum exosomal miRNA in patients with hepatitis b or hepatocellular carcinoma. Dis Markers 2015;2015:893594. https://doi.org/10.1155/2015/893594.

[148]

Ragni E, Colombini A,De Luca P et al. MiR-103a-3p and MiR-225p are reliable reference genes in extracellular vesicles from cartilage, adipose tissue, and bone marrow cells. Front Bioeng Biotechnol 2021;9:632440. https://doi.org/10.3389/fbioe.2021.632440.

[149]

149. Ferre A, Santiago L, Sánchez-Herrero JF et al. 3'IsomiR species composition affects reliable quantification of MiRNA/IsomiR variants by Poly(A) RT-QPCR: impact on small RNA-seq profiling validation. IntJ Mol Sci 2023;24:15436. https://doi.org/10.3390/ijms242015436.

[150]

Franco S, Pluvinet R, Sanchez-Herrero JF et al. Rapid and accurate quantification of isomiRs by RT-QPCR. Sci Rep 2022;12:17220. https://doi.org/10.1038/s41598-022-22298-7.

AI Summary AI Mindmap
PDF (1173KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/