Novel immunotherapeutic approaches in gastric cancer

Meng Yang , Wuhao Lin , Jiaqian Huang , Alessandro Mannucci , Huiyan Luo

Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (4) : pbae020

PDF (1845KB)
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (4) :pbae020 DOI: 10.1093/pcmedi/pbae020
Review
research-article

Novel immunotherapeutic approaches in gastric cancer

Author information +
History +
PDF (1845KB)

Abstract

Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.

Keywords

gastric cancer / immunotherapy / immune checkpoint inhibitor / adoptive cell therapy / CAR-T

Cite this article

Download citation ▾
Meng Yang, Wuhao Lin, Jiaqian Huang, Alessandro Mannucci, Huiyan Luo. Novel immunotherapeutic approaches in gastric cancer. Precision Clinical Medicine, 2024, 7(4): pbae020 DOI:10.1093/pcmedi/pbae020

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This research was supported by the National Key Research and Development Program of China (Grant No. 2021YFF1201300), the National Natural Science Foundation of China (Grants No. 82273402, 92374114, and 81930065), the Science and Technology Program of Guangdong (Grant No. 2019B020227002), the Natural Science Foundation of Guangdong Province (Grant No. 2014A030312015), the Science and Technology Program of Guangzhou (Grants No. 202002030208, 201904020046, and 2019B020227002), Guangzhou Key Research and Development Project (Grant No. 202206080008), and Guangdong Special Support Plan (Grant No. 2023TX07Y430).

Author contributions

H.Y.L.: conceptualization, supervision, project administration, funding acquisition. W.H.L., M.Y., J.Q.H.: data curation, software, formal analysis, investigation, visualization, methodology. H.Y.L., W.H.L., M.Y., J.Q.H., A.M.: Writing - original draft, writing - review and editing. All the authors reviewed and approved the final manuscript.

Conflict of interest

None declared. As an Editorial Board Member of Precision Clinical Medicine, the corresponding author H.Y.L. was blinded from reviewing and making decisions on this manuscript.

References

[1]

Bray F, Laversanne M, Sung H et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74:22963. https://doi.org/10.3322/caac.21834.

[2]

Hu HM, Tsai HJ, Ku HY et al. Survival outcomes of management in metastatic gastric adenocarcinoma patients. Sci Rep 2021;11:23142. https://doi.org/10.1038/s41598-021-02391-z.

[3]

Gullo I, Carneiro F, Oliveira C et al. Heterogeneity in gastric cancer: from pure morphology to molecular classifications. Pathobiology 2018;85:50-63. https://doi.org/10.1159/000473881.

[4]

Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-9. https://doi.org/10.1038/nature13480.

[5]

Salnikov M, Prusinkiewicz MA, Lin S et al. Tumor-infiltrating T cells in EBV-associated gastric carcinomas exhibit high levels of multiple markers of activation, effector gene expression, and exhaustion. Viruses 2023;15:176. https://doi.org/10.3390/v15010176.

[6]

Qiu MZ, Wang C, Wu Z et al. Dynamic single-cell mapping unveils Epstein-Barr virus-imprinted T-cell exhaustion and on-treatment response. Signal Transduct Target Ther 2023;8:370. https://doi.org/10.1038/s41392-023-01622-1.

[7]

Wei XL, Liu QW, Liu FR et al. The clinicopathological significance and predictive value for immunotherapy of programmed death ligand-1 expression in Epstein-Barr virus-associated gastric cancer. Oncoimmunology 2021;10:1938381. https://doi.org/10.1080/2162402X.2021.1938381.

[8]

Kim ST, Cristescu R, Bass AJ et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 2018;24:1449-58. https://doi.org/10.1038/s41591-018-0101-z.

[9]

Pietrantonio F, Miceli R, Raimondi A et al. Individual patient data meta-analysis of the value of microsatellite instability As a biomarker in gastric cancer. J Clin Oncol 2019;37:3392-400. https://doi.org/10.1200/JCO.19.01124.

[10]

Randon G, Aoki Y, Cohen R et al. Outcomes and a prognostic classifier in patients with microsatellite instability-high metastatic gastric cancer receiving PD-1 blockade. J Immunother Cancer 2023;11:e007104. https://doi.org/10.1136/jitc-2023-0071 04.

[11]

Duan Y, Xu D. Microsatellite instability and immunotherapy in gastric cancer: a narrative review. Precis Cancer Med 2023;6:14. https://doi.org/10.21037/pcm-22-48.

[12]

Narita Y, Muro K. Updated immunotherapy for gastric cancer. J Clin Med 2023;12:2636. https://doi.org/10.3390/jcm12072636.

[13]

Janjigian YY. Nivolumab (NIVO) Plus Chemotherapy (Chemo) or Ipilimumab (IPI) vs Chemo as First-Line ( 1 L ) Treatment for Advanced Gastric Cancer/Gastroesophageal Junction Cancer/Esophageal Adenocarcinoma (GC/GEJC/EAC): CheckMate 649 Study. ESMO Congress 2021, Abstract LBA7. https://oncologypro.esmo.org/meeting-resources/esmo-congress-2021/nivolumab-nivo-plus-chemotherapy-chemo-or-ipilimumab-ipi-vs-chemo-as-first-line-11-treatment-for-advanced-gastric-cancer-gastroesophageal-j.

[14]

Kwon M, An M, Klempner SJ et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov 2021;11:2168-85. https://doi.org/10.1158/2159-8290.CD-21-0219.

[15]

Kim KJ, Lee KS, Cho HJ et al. Prognostic implications of tumorinfiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum Pathol 2014;45:285-93. https://doi.org/10.1016/j.humpath.2013.09.004.

[16]

Zheng S, Guerrero-Haughton E, Foijer F. Chromosomal instability-driven cancer progression: interplay with the tumour microenvironment and therapeutic strategies. Cells 2023;12:2712. https://doi.org/10.3390/cells12232712.

[17]

Yasuda T, Wang YA. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Trends Cancer 2024: 10:627-42. https://doi.org/10.1016/j.trecan.2024.03.008.

[18]

Maleki SS, Rocken C. Chromosomal instability in gastric cancer biology. Neoplasia 2017;19:412-20. https://doi.org/10.1016/j.neo.2017.02.012.

[19]

Derks S, de Klerk LK, Xu X et al. Characterizing diversity in the tumor-immune microenvironment of distinct subclasses of gastroesophageal adenocarcinomas. Ann Oncol 2020;31:101120. https://doi.org/10.1016/j.annonc.2020.04.011.

[20]

Wong-Rolle A, Wei HK, Zhao C et al. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell 2021;12:426-35. https://doi.org/10.1007/s13238-020-00813-8.

[21]

Lin Y, Zhan Q, Zhang D. High sucralose intake suppresses autoimmunity and promotes tumor growth by limiting T cell-mediated immune responses. MedComm-Future Medicine 2023;2:e65. https://doi.org/https://doi.org/10.1002/mef2.65.

[22]

Arneth B. Tumor microenvironment. Medicina (Kaunas) 2019;56:15. https://doi.org/10.3390/medicina56010015.

[23]

Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 2010;15:166-79. https://doi.org/10.2741/3613.

[24]

Ham IH, Lee D, Hur H. Cancer-associated fibroblast-induced resistance to chemotherapy and radiotherapy in gastrointestinal cancers. Cancers (Basel) 2021;13:1172. https://doi.org/10.3390/cancers13051172.

[25]

Knipper K, Lyu SI, Quaas A et al. Cancer-associated fibroblast heterogeneity and its influence on the extracellular matrix and the tumor microenvironment. IntJ Mol Sci 2023;24:13482. https://doi.org/10.3390/ijms241713482.

[26]

Wang R, Song S, Qin J et al. Evolution of immune and stromal cell states and ecotypes during gastric adenocarcinoma progression. Cancer Cell 2023;41:1407-1426.e9. https://doi.org/10.1016/j.ccell.2023.06.005.

[27]

Grunberg N, Pevsner-Fischer M, Goshen-Lago T et al. Cancerassociated fibroblasts promote aggressive gastric Cancer phenotypes via Heat Shock factor 1-mediated secretion of extracellular vesicles. Cancer Res 2021;81:1639-53. https://doi.org/10.1158/0008-5472.CAN-20-2756.

[28]

Chen B, Liu X, Yu P et al. H. pylori-induced NF-rb-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancerassociated fibroblast-mediated tumour microenvironment remodelling. Clin Transl Med 2023;13:e1481. https://doi.org/10.1002/ctm2.1481.

[29]

Li D, Xia L, Huang P et al. Cancer-associated fibroblast-secreted IGFBP 7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis. Cell Death Discov 2023;9:17. https://doi.org/10.1038/s41420-023-01336-x.

[30]

Harada K, Dong X, Estrella JS et al. Tumor-associated macrophage infiltration is highly associated with PD-L1 expression in gastric adenocarcinoma. Gastric Cancer 2018;21:31-40. https://doi.org/10.1007/s10120-017-0760-3.

[31]

Yamaguchi T, Fushida S, Yamamoto Y et al. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 2016;19:1052-65. https://doi.org/10.1007/s10120-015-0579-8.

[32]

Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008;181:3733-9. https://doi.org/10.4049/jimmunol.181.6.3733.

[33]

Verreck FA, de Boer T, Langenberg DM et al. Human IL-23producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 2004;101:4560-5. https://doi.org/10.1073/pnas.0400983101.

[34]

Chen CW, Wang HC, Tsai IM et al. CD204-positive M2-like tumor-associated macrophages increase migration of gastric cancer cells by upregulating miR-210 to reduce NTN4 expression. Cancer Immunol Immunother 2024;73:1. https://doi.org/10.1007/s00262-023-03601-5.

[35]

Wang Z, Yang Y, Cui Y et al. Tumor-associated macrophages regulate gastric cancer cell invasion and metastasis through TGFβ2/NF-κB/Kindlin-2 axis. Chin J Cancer Res 2020;32:72-88. https://doi.org/10.21147/j.issn.1000-9604.2020.01.09.

[36]

Natsuki S, Yoshii M, Tanaka H et al. Involvement of CX3CR1(+) cells appearing in the abdominal cavity in the immunosuppressive environment immediately after gastric cancer surgery. World J Surg Oncol 2024;22:74. https://doi.org/10.1186/s12957-024-03353-1.

[37]

Whiteside TL. Tumor-infiltrating lymphocytes and their role in solid Tumor progression. Exp Suppl 2022;113:89-106. https://doi.org/10.1007/978-3-030-91311-3_3.

[38]

Lu J, Huang C, He R et al. CD4(-)/CD8(-) double-negative tumor-infiltrating lymphocytes expanded from solid tumor tissue suppress the proliferation of tumor cells in an MHCindependent way. J Cancer Res Clin Oncol 2023;149:9007-16. https://doi.org/10.1007/s00432-023-04823-x.

[39]

Li J, Cao Y, Liu Y et al. Multiomics profiling reveals the benefits of gamma-delta (γδ)T lymphocytes for improving the tumor microenvironment, immunotherapy efficacy and prognosis in cervical cancer. J Immunother Cancer 2024;12:e008355. https://doi.org/10.1136/jitc-2023-008355.

[40]

Liu X, Zhang Z, Zhao G. Recent advances in the study of regulatory T cells in gastric cancer. Int Immunopharmacol 2019;73:5607. https://doi.org/10.1016/j.intimp.2019.05.009.

[41]

Li K, Shi H, Zhang B et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021;6:362. https://doi.org/10.1038/s41392-021-00670-9.

[42]

Tsutsumi C, Ohuchida K, Katayama N et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells contribute to the development of an immunosuppressive tumor microenvironment in gastric cancer. Gastric Cancer 2024;27:248-62. https://doi.org/10.1007/s10120-023-01456-4.

[43]

Zhou J, Zhou P, Wang J et al. Roles of endothelial cell specific molecule-1 in tumor angiogenesis (Review). Oncol Lett 2024;27:137. https://doi.org/10.3892/ol.2024.14270.

[44]

Zhao X, Yu Z, Zang K. Platelet-derived growth factors affect clinical features and prognosis of gastric cancer. J Oncol 2022;2022:2108368. https://doi.org/10.1155/2022/2108368.

[45]

Shen K, Chen B, Yang L et al. Integrated analysis of single-cell and bulk RNA-sequencing data reveals the prognostic value and molecular function of THSD7A in gastric cancer. Aging (Albany NY) 2023;15:11940-69. https://doi.org/10.18632/aging.205 158.

[46]

He L, Wang W, Shi H et al. THBS4/integrin α2 axis mediates BM-MSCs to promote angiogenesis in gastric cancer associated with chronic Helicobacter pylori infection. Aging (Albany NY) 2021;13:19375-96. https://doi.org/10.18632/aging.203334.

[47]

Cui L, Liu T, Huang C et al. Gastric cancer mesenchymal stem cells trigger endothelial cell functional changes to promote cancer progression. Stem Cell Rev and Rep 2024;20:1285-98. https://doi.org/10.1007/s12015-024-10720-8.

[48]

Kang YK, Chen LT, Ryu MH et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2022;23:234-47. https://doi.org/10.1016/S1470-2045(21)00692-6.

[49]

Rha SY, Oh DY, Yañez P et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 2023;24:118195. https://doi.org/10.1016/s1470-2045(23)00515-6.

[50]

Shah MA, Kennedy EB, Alarcon-Rozas AE et al. Immunotherapy and targeted therapy for advanced gastroesophageal cancer: ASCO guideline. J Clin Oncol 2023;41:1470-91. https://doi.org/10.1200/jco.22.02331.

[51]

Lorenzen S, Götze TO, Thuss-Patience P et al. Perioperative Atezolizumab Plus Fluorouracil, Leucovorin, Oxaliplatin, and Docetaxel for resectable esophagogastric cancer: interim results from the randomized, multicenter, phase II/III DANTE/IKF-s633 trial. J Clin Oncol 2024;42:410-20. https://doi.org/10.1200/jco.23.00975.

[52]

Hossen MM, Ma Y, Yin Z et al. Current understanding of CTLA4: from mechanism to autoimmune diseases. Front Immunol 2023;14:1198365. https://doi.org/10.3389/fimmu.2023.1198365.

[53]

Romero D. From AACR 2024. Nat Rev Clin Oncol 2024;21:401. https://doi.org/10.1038/s41571-024-00897-9.

[54]

Dovedi SJ, Mazor Y, Elder M et al. MEDI5752: A novel bispecific antibody that preferentially targets CTLA-4 on PD-1 expressing T-cells. Cancer Res 2018;78:2776-. https://doi.org/10.1158/1538-7445.AM2018-2776.

[55]

Shi AP, Tang XY, Xiong YL et al. Immune checkpoint LAG3 and its Ligand FGL 1 in cancer. Front Immunol 2021;12:785091. https://doi.org/10.3389/fimmu.2021.785091.

[56]

Dai H, Wang Y, Lu X et al. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 2016;108: djv43. https://doi.org/10.1093/jnci/djv439.

[57]

Pan J, Tan Y, Wang G et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-Human, phase I trial. J Clin Oncol 2021;39:3340-51. https://doi.org/10.1200/JCO.21.00389.

[58]

Martin T, Usmani SZ, Berdeja JG et al. Ciltacabtagene Autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 2023;41:1265-74. https://doi.org/10.1200/JCO.22.00842.

[59]

Abramson JS, Palomba ML, Gordon LI et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020;396:839-52. https://doi.org/10.1016/S0140-6736(20)31366-0.

[60]

Kirtane K, Elmariah H, Chung CH et al. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. J Immunother Cancer 2021;9:e002723. https://doi.org/10.1136/jitc-2021-002723.

[61]

Entezam M, Sanaei MJ, Mirzaei Y et al. Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci 2023;318:121459. https://doi.org/10.1016/j.lfs.2023.121459.

[62]

Li R, Ma C, Cai H et al. The CAR T-cell mechanoimmunology at a glance. Adu Sci (Weinh) 2020;7:2002628. https://doi.org/10.1002/advs.202002628.

[63]

Rahbarizadeh F, Ahmadvand D, Moghimi SM. CAR T-cell bioengineering: single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev 2019;141:41-6. https://doi.org/10.1016/j.addr.2019.04.006.

[64]

Dwivedi A, Karulkar A, Ghosh S et al. Lymphocytes in Cellular therapy: functional regulation of CAR T cells. Front Immunol 2018;9:3180. https://doi.org/10.3389/fimmu.2018.03180.

[65]

Alabanza L, Pegues M, Geldres C et al. Function of novel antiCD19 chimeric antigen receptors with Human variable regions is affected by hinge and transmembrane domains. Mol Ther 2017;25:2452-65. https://doi.org/10.1016/j.ymthe.2017.07.013.

[66]

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood CancerJ 2021;11:69. https://doi.org/10.1038/s41408-021-00459-7.

[67]

Nishimoto KP, Barca T, Azameera A et al. Allogeneic CD20targeted gammadelta T cells exhibit innate and adaptive antitumor activities in preclinical B-cell lymphoma models. Clin Transl Immunology 2022;11:e1373. https://doi.org/10.1002/cti2.1373.

[68]

Rozenbaum M, Meir A, Aharony Y et al. Gamma-delta CART cells show CAR-directed and independent activity against leukemia. Front Immunol 2020;11:1347. https://doi.org/10.3389/fimmu.2020.01347.

[69]

van der Veken LT, Coccoris M, Swart E et al. Alpha beta T cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. J Immunol 2009;182:164-70. https://doi.org/10.4049/jimmunol.182.1.164.

[70]

Eshhar Z, Waks T, Gross G et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993;90:720-4. https://doi.org/10.1073/pnas.90.2.720.

[71]

Imai C, Mihara K, Andreansky M et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004;18:676-84. https://doi.org/10.1038/sj.leu.2403302.

[72]

Zhang C, Liu J, Zhong JF et al. Engineering CAR-T cells. Biomark Res 2017;5:22. https://doi.org/10.1186/s40364-017-0102-y.

[73]

Pegram HJ, Lee JC, Hayman EG et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood, The Journal of the American Society of Hematology 2012;119:4133-41.

[74]

Grillo F, Fassan M, Sarocchi F et al. HER2 heterogeneity in gastric/gastroesophageal cancers: from benchside to practice. World J Gastroenterol 2016;22:5879-87. https://doi.org/10.3748/wjg.v22.i26.5879.

[75]

Huang D, Duan H, Huang H et al. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci Rep 2016;6:20502. https://doi.org/10.1038/srep20502.

[76]

Zuo Q, Liu J, Zhang J et al. Development of trastuzumabresistant human gastric carcinoma cell lines and mechanisms of drug resistance. Sci Rep 2015;5:11634. https://doi.org/10.1038/srep11634.

[77]

Sun J, Li X, Chen P et al. From Anti-HER-2 to Anti-HER-2-CART cells: an evolutionary immunotherapy approach for gastric cancer. Review. Journal of Inflammation Research 2022;15:4061-85. https://doi.org/10.2147/jir.S368138.

[78]

Song Y, Tong C, Wang Y et al. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell 2018;9:867-78. https://doi.org/10.1007/s13238-017-0384-8.

[79]

Song Y, Tong C, Wang Y et al. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitroand xenotransplanted tumors in vivo. Article. Protein & Cell 2018;9:867-78. https://doi.org/10.1007/s13238-017-0384-8.

[80]

Han Y, Liu C, Li G et al. Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. Article. American Journal of Cancer Research 2018;8:10619.

[81]

Cao W, Xing H, Li Y et al. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022;10:38. https://doi.org/10.1186/s40364-022-00385-1.

[82]

Qi C, Gong J, Li J et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022;28:1189-98. https://doi.org/10.1038/s41591-022-01800-8.

[83]

Jiang H, Shi Z, Wang P et al. Claudin18.2-Specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. JNCI-Journal of the National Cancer Institute 2019;111:40918. https://doi.org/10.1093/jnci/djy134.

[84]

Botta GP, Chao J, Ma H et al. Metastatic gastric cancer target lesion complete response with Claudin18.2-CAR T cells. J Immunother Cancer 2024; 12 e007927. https://doi.org/10.1136/jitc-2023-007927.

[85]

Qi C, Gong J, Li J et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022;28:1189-98. https://doi.org/10.1038/s41591-022-01800-8.

[86]

Jung W-C, Jang Y-J, Kim J-H et al. Expression of intercellular adhesion molecule-1 and e-selectin in gastric cancer and their clinical significance. Journal of Gastric Cancer 2012;12:140. https://doi.org/10.5230/jgc.2012.12.3.140.

[87]

Jung M, Yang Y, McCloskey JE et al. Chimeric antigen receptor T cell therapy targeting ICAM-1 in gastric cancer. Mol Ther Oncolytics 2020;18:587-601. https://doi.org/10.1016/j.omto.2020.08.009.

[88]

Park S, Shevlin E, Vedvyas Y et al. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep 2017;7:14366. https://doi.org/10.1038/s41598-017-14749-3.

[89]

Yang Y, McCloskey JE, Yang H et al. Bispecific CAR T cells against EpCAM and inducible ICAM-1 overcome antigen heterogeneity and generate superior antitumor responses. Cancer Immunol Res 2021;9:1158-74. https://doi.org/10.1158/2326-6066.CIR-21-0062.

[90]

Liu LB, Liu T, Xin FZ. Correlations of ICAM-1 gene polymorphisms with susceptibility and multidrug resistance in colorectal cancer in a Chinese population. Medicine (Baltimore) 2017;96:e7481. https://doi.org/10.1097/MD.0000000000007481.

[91]

Deng K, Yang L, Hu B et al. The prognostic significance of pretreatment serum CEA levels in gastric cancer: a meta-analysis including 14651 patients. PLoS One 2015;10:e0124151. https://doi.org/10.1371/journal.pone.0124151.

[92]

Yang L, Wang Y, Wang H. Use of immunotherapy in the treatment of gastric cancer. Oncol Lett 2019;18:5681-90. https://doi.org/10.3892/ol.2019.10935.

[93]

Zhang C, Wang L, Zhang Q et al. Screening and characterization of the scFv for chimeric antigen receptor T cells targeting CEApositive carcinoma. Front Immunol 2023;14:1182409. https://doi.org/10.3389/fimmu.2023.1182409.

[94]

Cha SE, Kujawski M, JY P et al. Tumor regression and immunity in combination therapy with anti-CEA chimeric antigen receptor T cells and anti-CEA-IL 2 immunocytokine. Oncoimmunology 2021;10:1899469. https://doi.org/10.1080/2162402X.2021.1899469.

[95]

Silveira CRF, Corveloni AC, Caruso SR et al. Cytokines as an important player in the context of CAR-T cell therapy for cancer: their role in tumor immunomodulation, manufacture, and clinical implications. Front Immunol 2022;13:947648. https://doi.org/10.3389/fimmu.2022.947648.

[96]

Christensen JG, Burrows J, Salgia R. c-met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 2005;225:1-26. https://doi.org/10.1016/j.canlet.2004.09.044.

[97]

Birchmeier C, Birchmeier W, Gherardi E. Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4:91525. https://doi.org/10.1038/nrm1261.

[98]

Kang CH, Kim Y, Lee DY et al. c-met-specific chimeric antigen receptor T cells demonstrate anti-tumor effect in c-met positive gastric cancer. Cancers 2021; 13 5738. https://doi.org/10.3390/cancers13225738.

[99]

Chen C, Gu Y-M, Zhang F et al. Construction of PD1/CD 28 chimeric-switch receptor enhances anti-tumor ability of c-met CAR-T in gastric cancer. Oncoimmunology 2021;10 1901434. https://doi.org/10.1080/2162402x.2021.1901434.

[100]

Yuan X, Sun Z, Yuan Q et al. Dual-function chimeric antigen receptor T cells targeting c-Met and PD-1 exhibit potent anti-tumor efficacy in solid tumors. Article. Invest New Drugs 2021;39:34-51. https://doi.org/10.1007/s10637-020-00978-3.

[101]

Che X, Yun U-J, Lee S et al. Development of a novel L1CAMtargeted CAR-T, CX804, and its therapeutic efficacy in ovarian and gastric cancer. Meeting abstract. Cancer Res 2023;83:1772-. https://doi.org/10.1158/1538-7445.Am2023-1772.

[102]

Wenqi D, Li W, Shanshan C et al. EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol 2009;135:1277-85. https://doi.org/10.1007/s00432-009-0569-5.

[103]

Fang W, Luo T, Lu Z et al. EpCAM-targeted CAR-T cell therapy in patients with advanced colorectal and gastric cancers. Meeting Abstract. Ann Oncol 2022;33:S880-1. https://doi.org/10.1016/j.annonc.2022.07.863.

[104]

Han Y, Sun B, Cai H et al. Simultaneously target of normal and stem cells-like gastric cancer cells via cisplatin and anti-CD133 CAR-T combination therapy. Cancer Immunology Immunotherapy 2021;70:2795-803. https://doi.org/10.1007/s00262-021-02891-X.

[105]

Feng Z, He X, Zhang X et al. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nat Cancer 2022;3:58194. https://doi.org/10.1038/s43018-022-00344-7.

[106]

Hickman TL, Choi E, Whiteman KR et al. BOXR1030, an antiGPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS One 2022;17:e0266980. https://doi.org/10.1371/journal.pone.0266980.

[107]

Kim M, Pyo S, Kang CH et al. Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PLoS One 2018;13:e0198347. https://doi.org/10.1371/journal.pone.0198347.

[108]

Lv J, Zhao R, Wu D et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol 2019;12:18. https://doi.org/10.1186/s13045-019-0704-y.

[109]

Qin L, Zhao R, Chen D et al. Chimeric antigen receptor T cells targeting PD-L 1 suppress tumor growth. Biomark Res 2020;8:19. https://doi.org/10.1186/s40364-020-00198-0.

[110]

Zhai X, You F, Xiang S et al. MUC1-Tn-targeting chimeric antigen receptor-modified Vγ9 Vδ2 T cells with enhanced antigenspecific anti-tumor activity. Am J Cancer Res 2021;11:79-91.

[111]

Feng Z, He X, Zhang X et al. Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nat Cancer 2022;3:58194. https://doi.org/10.1038/s43018-022-00344-7.

[112]

Sun F, Yu X, Ju R et al. Antitumor responses in gastric cancer by targeting B7H 3 via chimeric antigen receptor T cells. Cancer Cell Int 2022;22 50. https://doi.org/10.1186/s12935-022-02471-8.

[113]

Sotoudeh M, Shakeri R, Dawsey SM et al. ANTXR1 (TEM8) overexpression in gastric adenocarcinoma makes the protein a potential target of immunotherapy. Cancer Immunology Immunotherapy 2019;68:1597-603. https://doi.org/10.1007/s00262-019-02392-y.

[114]

Wu D, Lv J, Zhao R et al. PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomark Res 2020; 8 3. https://doi.org/10.1186/s40364-020-0183-x.

[115]

He J, Xiong X, Yang H et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. Cell Res 2022;32:530-42. https://doi.org/10.1038/s41422-022-00627-9.

[116]

Shafer P, Kelly LM, Hoyos V. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front Immunol 2022;13:835762. https://doi.org/10.3389/fimmu.2022.835762.

[117]

Harris DT, Hager MV, Smith SN et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J Immunol 2018;200:1088-100. https://doi.org/10.4049/jimmunol.1700236.

[118]

Wilson IA, Garcia KC. T-cell receptor structure and TCR complexes. Curr Opin Struct Biol 1997;7:839-48. https://doi.org/10.1016/s0959-440x(97)80156-x.

[119]

van der Merwe PA, Dushek O. Mechanisms for T cell receptor triggering. Nat Rev Immunol 2011;11:47-55. https://doi.org/10.1038/nri2887.

[120]

Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol 2015;195:5117-22. https://doi.org/10.4049/jimmunol.1501657.

[121]

Marcinkowski B, Stevanovic S, Heiman SR et al. Cancer targeting by TCR gene-engineered T cells directed against Kita-Kyushu Lung Cancer Antigen-1. J Immunother Cancer 2019; 7 229. https://doi.org/10.1186/s40425-019-0678-x.

[122]

Thomas R, Al-Khadairi G, Roelands J et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol 2018;9:947. https://doi.org/10.3389/fimmu.2018.00947.

[123]

Blankenstein T, Leisegang M, Uckert W et al. Targeting cancerspecific mutations by T cell receptor gene therapy. Curr Opin Immunol 2015;33:112-9. https://doi.org/10.1016/j.coi.2015.02.005.

[124]

Pang Z, Lu MM, Zhang Y et al. Neoantigen-targeted TCRengineered T cell immunotherapy: current advances and challenges. Biomark Res 2023;11:104. https://doi.org/10.1186/s40364-023-00534-0.

[125]

Zhang H, Dai Z, Wu W et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021;40:184. https://doi.org/10.1186/s13046-021-01987-7.

[126]

Chiurillo MA. Role of the Wnt/beta-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med 2015;5:84102. https://doi.org/10.5493/wjem.v5.i2.84.

[127]

Sarnaik AA, Hamid O, Khushalani NI et al. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J Clin Oncol 2021;39:2656-66. https://doi.org/10.1200/JCO.21.00612.

[128]

Solinas C, Pusole G, Demurtas L et al. Tumor infiltrating lymphocytes in gastrointestinal tumors: controversies and future clinical implications. Crit Rev Oncol Hematol 2017;110:106-16. https://doi.org/10.1016/j.critrevonc.2016.11.016.

[129]

Kverneland AH, Chamberlain CA, Borch TH et al. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types. J Immunother Cancer 2021;9:e003499. https://doi.org/10.1136/jitc-2021-003499.

[130]

Chamberlain CA, Bennett EP, Kverneland AH et al. Highly efficient PD-1-targeted CRISPR-Cas9 for tumorinfiltrating lymphocyte-based adoptive T cell therapy. Mol Ther Oncolytics 2022;24:417-28. https://doi.org/10.1016/j.omto.2022.01.004.

[131]

Chiossone L, Dumas PY, Vienne M et al. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol 2018;18:671-88. https://doi.org/10.1038/s41577-018-0061-z.

[132]

Sivori S, Meazza R, Quintarelli C et al. NK cell-based immunotherapy for hematological malignancies. J Clin Med 2019;8:1702. https://doi.org/10.3390/jcm8101702.

[133]

Cruz-Muñoz ME, Valenzuela-Vázquez L, Sánchez-Herrera J et al. From the "missing self" hypothesis to adaptive NK cells: insights of NK cell-mediated effector functions in immune surveillance. J Leukocyte Biol 2019;105:955-71. https://doi.org/10.1002/JLB.MR0618-224RR.

[134]

Han B, Mao F-y, Zhao Y-l et al. Altered NKp30, NKp46, NKG2D, and DNAM-1 expression on circulating NK cells is associated with tumor progression in human gastric cancer. J Immunol Res 2018;2018:1-9. https://doi.org/10.1155/2018/6248590.

[135]

Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discovery 2020;19:200-18. https://doi.org/10.1038/s41573-019-0052-1.

[136]

Daher M, Melo Garcia L, Li Y et al. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunology 2021;10:e1274. https://doi.org/10.1002/cti2.1274.

[137]

Heipertz EL, Zynda ER, Stav-Noraas TE et al. Current perspectives on "off-the-shelf" allogeneic NK and CAR-NK cell therapies. Front Immunol 2021;12:732135. https://doi.org/10.3389/fim mu.2021.732135.

[138]

Li L, Chen H, Marin D et al. A novel immature natural killer cell subpopulation predicts relapse after cord blood transplantation. Blood Adu 2019;3:4117-30. https://doi.org/10.1182/bloodadvances.2019000835.

[139]

Cichocki F, Bjordahl R, Gaidarova S et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med 2020;12:eaaz5618. https://doi.org/10.1126/scitranslmed.aaz5618.

[140]

Tonn T, Schwabe D, Klingemann HG et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 2013;15:1563-70. https://doi.org/10.1016/j.jcyt.2013.06.017.

[141]

White LG, Goy HE, Rose AJ et al. Controlling cell trafficking: addressing failures in CAR T and NK cell therapy of solid tumours. Cancers (Basel) 2022;14:978. https://doi.org/10.3390/cancers14040978.

[142]

Valeri A, García-Ortiz A, Castellano E et al. Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Front Immunol 2022;13:953849. https://doi.org/10.3389/fimmu.2022.953849.

[143]

Cella M, Otero K, Colonna M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA 2010;107:10961-6. https://doi.org/10.1073/pnas.1005641107.

[144]

Parrish-Novak J, Dillon SR, Nelson A et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000;408:57-63. https://doi.org/10.1038/35040504.

[145]

Zhang XL, Yang YS, Xu DP et al. Comparative study on overexpression of HER2/neu and HER3 in gastric cancer. World J Surg 2009;33:2112-8. https://doi.org/10.1007/s00268-009-0142z.

[146]

Wang JY, Chang CT, Hsieh JS et al. Role of MUC1 and MUC5AC expressions as prognostic indicators in gastric carcinomas. J Surg Oncol 2003;83:253-60. https://doi.org/10.1002/jso.10222.

[147]

Kim DY, Kim HR, Shim JH et al. Significance of serum and tissue carcinoembryonic antigen for the prognosis of gastric carcinoma patients. J Surg Oncol 2000;74:185-92.

[148]

Shiraishi K, Mimura K, Kua L-F et al. Inhibition of MMP activity can restore NKG2D ligand expression in gastric cancer, leading to improved NK cell susceptibility. J Gastroenterol 2016;51:110111. https://doi.org/10.1007/s00535-016-1197-x.

[149]

Yao L, Hou J, Wu X et al. Cancer-associated fibroblasts impair the cytotoxic function of NK cells in gastric cancer by inducing ferroptosis via iron regulation. Redox Biol 2023;67:102923. https://doi.org/10.1016/j.redox.2023.102923.

[150]

Wu X, Huang S. HER2-specific chimeric antigen receptorengineered natural killer cells combined with apatinib for the treatment of gastric cancer. Bull Cancer 2019;106:946-58. https://doi.org/10.1016/j.bulcan.2019.03.012.

[151]

Wu X, Huang S. HER2-specific chimeric antigen receptorengineered natural killer cells combined with apatinib for the treatment of gastric cancer. Bull Cancer 2019;106:946-58. https://doi.org/10.1016/j.bulcan.2019.03.012.

[152]

Golubovskaya V, Sienkiewicz J, Sun J et al. CAR-NK cells generated with mRNA-LNPs kill tumor target cells In vitro and In vivo. Int J Mol Sci 2023;24:13364. https://doi.org/10.3390/ijms241713364.

[153]

Roy J, Lin NT, Chow K et al. Pre-clinical development of ARB011: A CDH17 targeting allogeneic nonviral RNA-based "Flash" CAR-NK therapy for gastrointestinal cancer. Cancer Res 2024;84:1326-. https://doi.org/10.1158/1538-7445.AM2024-1326.

[154]

Rossi F, Fredericks N, Snowden A et al. Next generation natural killer cells for cancer immunotherapy. Front Immunol 2022;13:886429. https://doi.org/10.3389/fimmu.2022.886429.

[155]

Melaiu O, Lucarini V, Cifaldi L et al. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol 2020;10:3038. https://doi.org/10.3389/fimmu.2019.03038.

[156]

Yang K, Zhao Y, Sun G et al. Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Front Immunol 2022;13:1081546. https://doi.org/10.3389/fimmu.2022.1081546.

[157]

Robinson A, Han CZ, Glass CK et al. Monocyte regulation in homeostasis and malignancy. Trends Immunol 2021;42:104-19. https://doi.org/10.1016/j.it.2020.12.001.

[158]

Vitale I, Manic G, Coussens LM et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36-50. https://doi.org/10.1016/j.cmet.2019.06.001.

[159]

Lee C, Jeong H, Bae Y et al. Targeting of M2-like tumorassociated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer 2019;7:147. https://doi.org/10.1186/s40425-019-0610-4.

[160]

Piao H, Fu L, Wang Y et al. A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression. J Exp Clin Cancer Res 2022;41: 174.

[161]

Liu P, Zhao L, Kroemer G et al. PD-L1(+) macrophages suppress T cell-mediated anticancer immunity. Oncoimmunology 2024;13:2338951. https://doi.org/10.1080/2162402X.2024.23 38951.

[162]

Wu M, Xu X, Yang C et al. Regulator of G protein signaling 1 is a potential target in gastric cancer and impacts tumorassociated macrophages. Cancer Sci 2024;115:1085-101. https://doi.org/10.1111/cas.16083.

[163]

Zhao R, Peng C, Song C et al. BICC 1 as a novel prognostic biomarker in gastric cancer correlating with immune infiltrates. Int Immunopharmacol 2020;87:106828. https://doi.org/10.1016/j.intimp.2020.106828.

[164]

Liu YJ, Li JP, Zhang Y et al. FSTL 3 is a prognostic biomarker in gastric cancer and is correlated with M2 macrophage infiltration. Onco Targets Ther 2021;14:4099-117. https://doi.org/10.2147/ott.S314561.

[165]

Xue L, Chu W, Wan F et al. YKL-39 is an independent prognostic factor in gastric adenocarcinoma and is associated with tumorassociated macrophage infiltration and angiogenesis. World J Surg Oncol 2022;20:362. https://doi.org/10.1186/s12957-022-02830-9.

[166]

Liu M, Liu J, Liang Z et al. CAR-macrophages and CAR-T cells synergistically kill tumor cells in vitro. Cells 2022;11:3692. https://doi.org/10.3390/cells11223692.

[167]

Zhang L, Tian L, Dai X et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol 2020;13:153. https://doi.org/10.1186/s13045-020-00983-2.

[168]

Shah Z, Tian L, Li Z et al. Human anti-PSCA CAR macrophages possess potent antitumor activity against pancreatic cancer. Cell Stem Cell 2024;31:803-17. https://doi.org/10.1016/j.stem.2024.03.018.

[169]

Zhang Y, Yang J, Zhang T et al. Emerging advances in nanobiomaterials-assisted chimeric antigen receptor (CAR)macrophages for tumor immunotherapy. Front Bioeng Biotechnol 2023;11:1211687. https://doi.org/10.3389/fbioe.2023.1211687.

[170]

Morrissey MA, Williamson AP, Steinbach AM et al. Chimeric antigen receptors that trigger phagocytosis. eLife 2018;7:e36688. https://doi.org/10.7554/eLife.36688.

[171]

Lei A, Yu H, Lu S et al. A second-generation M1-polarized CAR macrophage with antitumor efficacy. Nat Immunol 2024;25:10216. https://doi.org/10.1038/s41590-023-01687-8.

[172]

bin Umair M, Akusa FN, Kashif H et al. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol 2022;167:1387-404.

[173]

Gao Y, Ju Y, Ren X et al. Enhanced infection efficiency and cytotoxicity mediated by vpx-containing lentivirus in chimeric antigen receptor macrophage (CAR-M). Heliyon 2023;9:e21886. https://doi.org/10.1016/j.heliyon.2023.e21886.

[174]

Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J 2021;23:78. https://doi.org/10.1208/s12248-021-00608-7.

[175]

Sloas C, Gill S, Klichinsky M. Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front Immunol 2021;12:783305. https://doi.org/10.3389/fimmu.2021.783305.

[176]

Li X, Li W, Xu L et al. Chimeric antigen receptor-immune cells against solid tumors: structures, mechanisms, recent advances, and future developments. Chin Med J (Engl) 2023;137:1285-302. https://doi.org/10.1097/CM9.0000000000002818.

[177]

Schepisi G, Gianni C, Palleschi M et al. The new frontier of immunotherapy: chimeric antigen receptor T (CAR-T) cell and macrophage (CAR-M) therapy against breast cancer. Cancers (Basel) 2023;15:1597. https://doi.org/10.3390/cancers15051597.

[178]

Dong X, Fan J, Xie W et al. Efficacy evaluation of chimeric antigen receptor-modified human peritoneal macrophages in the treatment of gastric cancer. Br J Cancer 2023;129:551-62. https://doi.org/10.1038/s41416-023-02319-6.

[179]

Kang M, Lee SH, Kwon M et al. Nanocomplex-mediated In vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adu Mater 2021;33:e2103258. https://doi.org/10.1002/adma.202103258.

[180]

Abdin SM, Paasch D, Morgan M et al. CARs and beyond: tailoring macrophage-based cell therapeutics to combat solid malignancies. J Immunother Cancer 2021;9:e002741. https://doi.org/10.1136/jitc-2021-002741.

[181]

Zhang W, Liu M, Li W et al. Immune cells in the B-cell lymphoma microenvironment: from basic research to clinical applications. Chin Med J (Engl) 2024;137:776-90. https://doi.org/10.1097/CM9.0000000000002919.

[182]

Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol 2019;9:1146. https://doi.org/10.3389/fonc.2019.01146.

[183]

Ponzetta A, Carriero R, Carnevale S et al. Neutrophils driving unconventional T cells mediate resistance against Murine Sarcomas and selected Human tumors. Cell 2019;178:346-60 e24. https://doi.org/10.1016/j.cell.2019.05.047.

[184]

Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018;104:701-15. https://doi.org/10.1002/jlb.4ri0418-151r.

[185]

Guimarães-Bastos D, Frony AC, Barja-Fidalgo C et al. Melanoma-derived extracellular vesicles skew neutrophils into a pro-tumor phenotype. J Leukoc Biol 2022;111:585-96. https://doi.org/10.1002/jlb.3a0120-050rr.

[186]

Chen Y, Yu Z, Tan X et al. CAR-macrophage: A new immunotherapy candidate against solid tumors. Biomed Pharmacother 2021;139:111605. https://doi.org/10.1016/j.biopha.2021.111605.

[187]

Chang Y, Syahirah R, Wang X et al. Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy. Cell Rep 2022;40:111128. https://doi.org/10.1016/j.celrep.2022.111128.

[188]

Harris JD, Chang Y, Syahirah R et al. Engineered anti-prostate cancer CAR-neutrophils from human pluripotent stem cells. J Immunol Regen Med 2023;20:100074. https://doi.org/10.1016/j.regen.2023.100074.

[189]

Chang Y, Cai X, Syahirah R et al. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat Commun 2023;14:2266. https://doi.org/10.1038/s41467-023-37872-4.

[190]

Bertrand A, Kostine M, Barnetche T et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med 2015;13:211. https://doi.org/10.1186/s12916-015-0455-8.

[191]

Segui E, Zamora-Martinez C, Barreto TD et al. Severe immunerelated adverse events: A case series of patients needing hospital admission in a Spanish oncology referral center and review of the literature. Diagnostics (MDPI, Basel, Switzerland.) 2022;12:2116. https://doi.org/10.3390/diagnostics12092116.

[192]

Yuan H, Duan DD, Zhang YJ. Comprehensive analysis of treatment-related adverse events of immunotherapy in advanced gastric or gastroesophageal junction cancer: A metaanalysis of randomized controlled trials. Clin Res Hepatol Gas-troenterol 2022;46:102031. https://doi.org/10.1016/j.clinre.2022.102031.

[193]

Hao W, Liu W, Chang R et al. Safety and clinical efficacy of immune checkpoint inhibitors in advanced gastric cancer in the real world. J Cancer Res Clin Oncol 2024;150:180. https://doi.org/10.1007/s00432-024-05703-8.

[194]

Chung HC, Arkenau HT, Lee J et al. Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: phase 1b results from the JAVELIN Solid Tumor trial. J Immunother Cancer 2019;7:30. https://doi.org/10.1186/s40425-019-0508-1.

[195]

Tintelnot J, Goekkurt E, Binder M et al. Ipilimumab or FOLFOX with Nivolumab and Trastuzumab in previously untreated HER2-positive locally advanced or metastatic EsophagoGastric adenocarcinoma-the randomized phase 2 INTEGA trial (AIO STO 0217). BMC Cancer 2020;20:503. https://doi.org/10.1186/s12885-020-06958-3.

[196]

Shulgin B, Kosinsky Y, Omelchenko A et al. Dose dependence of treatment-related adverse events for immune checkpoint inhibitor therapies: a model-based meta-analysis. Oncoimmunology 2020;9:1748982. https://doi.org/10.1080/2162402X.2020.1748982.

[197]

Ascierto PA, Del Vecchio M, Robert C et al. Ipilimumab 10mg/kg versus ipilimumab 3mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2017;18:611-22. https://doi.org/10.1016/S1470-2045(17)30231-0.

[198]

Noori M, Mahjoubfar A, Azizi S et al. Immune checkpoint inhibitors plus chemotherapy versus chemotherapy alone as first-line therapy for advanced gastric and esophageal cancers: A systematic review and meta-analysis. Int Immunopharmacol 2022;113:109317. https://doi.org/10.1016/j.intimp.2022.109317.

[199]

Park S, Nam CM, Kim SG et al. Comparative efficacy and tolerability of third-line treatments for advanced gastric cancer: A systematic review with Bayesian network meta-analysis. Eur J Cancer 2021;144:49-60. https://doi.org/10.1016/j.ejca.2020.10.030.

[200]

Huang M, Li J, Yu X et al. Comparison of efficacy and safety of third-line treatments for advanced gastric cancer: A systematic review with Bayesian network meta-analysis. Front Oncol 2021;11:734323. https://doi.org/10.3389/fonc.2021.734323.

[201]

Chennamadhavuni A, Abushahin L, Jin N et al. Risk factors and biomarkers for immune-related adverse events: A practical guide to identifying high-Risk patients and rechallenging immune checkpoint inhibitors. Front Immunol 2022;13:779691. https://doi.org/10.3389/fimmu.2022.779691.

[202]

Wang J, Ma Y, Lin H et al. Predictive biomarkers for immunerelated adverse events in cancer patients treated with immune-checkpoint inhibitors. BMC Immunol 2024;25:8. https://doi.org/10.1186/s12865-024-00599-y.

[203]

Lee DW, Santomasso BD, Locke FL et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019;25:625-38. https://doi.org/10.1016/j.bbmt.2018.12.758.

[204]

Ying Z, Song Y, Zhu J. Effectiveness and safety of anti-CD19 chimeric antigen receptor-T cell immunotherapy in patients with relapsed/refractory large B-cell lymphoma: A systematic review and meta-analysis. Front Pharmacol 2022;13:834113. https://doi.org/10.3389/fphar.2022.834113.

[205]

van den Berg JH, Gomez-Eerland R,van de Wiel B et al. Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther 2015;23:1541-50. https://doi.org/10.1038/mt.2015.60.

[206]

Hirayama AV, Turtle CJ. Toxicities of CD19 CAR-T cell immunotherapy. Am J Hematol 2019;94:S42-9. https://doi.org/10.1002/ajh.25445.

[207]

Findakly D, Luther RD, 3rd, Wang J. Tumor Lysis Syndrome in solid tumors: A comprehensive literature review, new insights, and novel strategies to improve outcomes. Cureus 2020;12:e8355. https://doi.org/10.7759/cureus.8355.

[208]

Neelapu SS, Tummala S, Kebriaei P et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol 2018;15:47-62. https://doi.org/10.1038/nrclinonc.2017.148.

[209]

Santomasso BD, Park JH, Salloum D et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018;8:958-71. https://doi.org/10.1158/2159-8290.CD-17-1319.

[210]

Linette GP, Stadtmauer EA, Maus MV et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 2013;122:863-71. https://doi.org/10.1182/blood-2013-03-490565.

[211]

Chodon T, Comin-Anduix B, Chmielowski B et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 2014;20:2457-65. https://doi.org/10.1158/1078-0432.CCR-13-3017.

[212]

Kumar S, Anselmo AC, Banerjee A et al. Shape and sizedependent immune response to antigen-carrying nanoparticles. J Control Release 2015;220:141-8. https://doi.org/10.1016/j.jconrel.2015.09.069.

[213]

Behzadi S, Serpooshan V, Tao W et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017;46:4218-44. https://doi.org/10.1039/c6cs00636a.

[214]

Danhier F, Ansorena E, Silva JM et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161:505-22. https://doi.org/10.1016/j.jconrel.2012.01.043.

[215]

Smith TT, Stephan SB, Moffett HF et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 2017;12:813-20. https://doi.org/10.1038/nnano.2017.57.

[216]

Li S-Y, Liu Y, Xu C-F et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Controlled Release 2016;231:17-28. https://doi.org/10.1016/j.jconrel.2016.01.044.

[217]

Yang M, Li J, Gu P et al. The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioactive materials 2021;6:1973-87. https://doi.org/10.1016/j.bioactmat.2020.12.010.

[218]

Lee I-C, Ko J-W, Park S-H et al. Copper nanoparticles induce early fibrotic changes in the liver via TGF-β/smad signaling and cause immunosuppressive effects in rats. Nanotoxicology 2018;12:637-51. https://doi.org/10.1080/17435390.2018.1472313.

[219]

Sushnitha M, Evangelopoulos M, Tasciotti E et al. Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications. Front Bioeng Biotechnol 2020;8:627. https://doi.org/10.3389/fbioe.2020.00627.

[220]

Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008;60:876-85. https://doi.org/10.1016/j.addr.2007.08.044.

[221]

Aikins ME, Qin Y, Dobson HE et al. Cancer stem cell antigen nanodisc cocktail elicits anti-tumor immune responses in melanoma. J Control Release 2022;351:872-82. https://doi.org/10.1016/j.jconrel.2022.09.061.

[222]

Kuai R, Ochyl LJ, Bahjat KS et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 2017;16:48996. https://doi.org/10.1038/nmat4822.

[223]

Chen Q, Xu L, Liang C et al. Photothermal therapy with immuneadjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016;7:13193. https://doi.org/10.1038/ncomms13193.

[224]

Saito T, Wada H, Yamasaki M et al. High expression of MAGEA4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine 2014;32:5901-7. https://doi.org/10.1016/j.vaccine.2014.09.002.

[225]

Speetjens FM, Kuppen PJ, Welters MJ et al. Induction of p53specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer. Clin Cancer Res 2009;15:1086-95. https://doi.org/10.1158/1078-0432.CCR-08-2227.

[226]

Ma M, Liu J, Jin S et al. Development of tumour peptide vaccines: from universalization to personalization. Scand J Immunol 2020;91:e12875. https://doi.org/10.1111/sji.12875.

[227]

Wu Z, Lim HK, Tan SJ et al. Potent-by-design: amino acids mimicking porous nanotherapeutics with intrinsic anticancer targeting properties. Small 2020;16:e2003757. https://doi.org/10.1002/smll. 202003757.

[228]

Gupta J, Ahmed AT, Tayyib NA et al. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023;166:115337. https://doi.org/10.1016/j.biopha.2023.115337.

[229]

Li Y, Tian L, Zhao T et al. A nanotherapeutic system for gastric cancer suppression by synergistic chemotherapy and immunotherapy based on iPSCs and DCs exosomes. Cancer Immunol Immunother 2023;72:1673-83. https://doi.org/10.1007/s00262-022-03355-6.

AI Summary AI Mindmap
PDF (1845KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/