Communication between cancer cell subtypes by exosomes contributes to nasopharyngeal carcinoma metastasis and poor prognosis

Hao-Jun Xie , Ming-Jie Jiang , Ke Jiang , Lin-Quan Tang , Qiu-Yan Chen , An-Kui Yang , Hai-Qiang Mai

Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (3) : pbae018

PDF (3367KB)
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (3) :pbae018 DOI: 10.1093/pcmedi/pbae018
Research Article
research-article

Communication between cancer cell subtypes by exosomes contributes to nasopharyngeal carcinoma metastasis and poor prognosis

Author information +
History +
PDF (3367KB)

Abstract

Background: Intratumor heterogeneity is common in cancers, with different cell subtypes supporting each other to become more malignant. Nasopharyngeal carcinoma (NPC), a highly metastatic cancer, shows significant heterogeneity among its cells. This study investigates how NPC cell subtypes with varying metastatic potentials influence each other through exosome-transmitted molecules.

Methods: Exosomes were purified and characterized. MicroRNA expression was analyzed via sequencing and qRT-PCR. The effects of miR-30a-5p on migration, invasion, and metastasis were evaluated in vitro and in vivo. Its impact on desmoglein glycoprotein (DSG2) was assessed using dual-luciferase assays and Western blotting. Immunohistochemistry (IHC) and statistical models linked miR-30a-5p/DSG2 levels to patient prognosis.

Results: Different NPC cell subtypes transmit metastatic potential via exosomes. High-metastatic cells enhance the migration, invasion, and metastasis of low-metastatic cells through exosome-transmitted miR-30a-5p. Plasma levels of exosomal miR-30a-5p are reliable indicators of NPC prognosis. miR-30a-5p may promote metastasis by targeting DSG2 and modulating Wnt signaling. Plasma exosomal miR-30a-5p inversely correlates with DSG2 levels, predicting patient outcomes.

Conclusion: High-metastatic NPC cells can increase the metastatic potential of low-metastatic cells through exosome-transmitted miR-30a-5p, which is a valuable prognostic marker assessable via liquid biopsy.

Keywords

cell heterogeneity / cell communication / exosomes / metastasis / nasopharyngeal carcinoma

Cite this article

Download citation ▾
Hao-Jun Xie, Ming-Jie Jiang, Ke Jiang, Lin-Quan Tang, Qiu-Yan Chen, An-Kui Yang, Hai-Qiang Mai. Communication between cancer cell subtypes by exosomes contributes to nasopharyngeal carcinoma metastasis and poor prognosis. Precision Clinical Medicine, 2024, 7(3): pbae018 DOI:10.1093/pcmedi/pbae018

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgement

This work was supported by grants from the National Key Research and Development Program of China (Grant Nos. 2022YFC2505800, 2022YFC2705005), the National Natural Science Foundation of China (Grant Nos. 32200651, 82203776, 82203125, 82222050, 82272739, 82272882, 82173287, 82073003, 82003267, 82002852), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021B1515230002, 2022A1515110033), Science and Technology Program of Guangzhou(Grant Nos. 202201011561, 2023A04J2127), Sun Yat-sen University Clinical Research 5010 Program (Grant Nos. 201315, 2015021, 2017010, 2019023), Innovative Research Team of High-level Local Universities in Shanghai (Grant No. SSMU-ZLCX20180500), Postdoctoral Innovative Talent Support Program (Grant No. BX20220361), Planned Science and Technology Project of Guangdong Province (Grant No. 2019B020230002), Key Youth Teacher Cultivating Program of Sun Yat-sen University (Grant No. 20ykzd24), and Fundamental Research Funds for the Central Universities.

Supplementary data

Supplementary data is available at PCMEDI Journal online.

Conflict of interest

None declared.

Ethics approval

The work was approved by the Ethics Committee and Animal Ethics Committee of Sun Yat-sen University Cancer Center (ethics approval number: L102012019120L; B2023-598-01).

Data availability

The miRNA sequencing data have been submitted to the NCBI Sequence Read Archive (SRA) under the accession number PRJNA1051654.

References

[1]

Chen YP, Chan ATC, Le QT et al. Nasopharyngeal carcinoma. Lancet 2019;394:64-80. https://doi.org/10.1016/S0140-6736(19)30956-0.

[2]

Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M et al. Recurrent/metastatic nasopharyngeal carcinoma treatment from present to future: where are we and where are we heading? Curr Treat Options Oncol 2023;24:1138-66. https://doi.org/10.1007/s11864-023-01101-3.

[3]

Dentro SC, Leshchiner I, Haase K et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021;184:2239-54 e2239. https://doi.org/10.1016/j.cell.2021.03.009.

[4]

McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017;168:613-28. https://doi.org/10.1016/j.cell.2017.01.018.

[5]

Peng WS, Zhou X, Yan WB et al. Dissecting the heterogeneity of the microenvironment in primary and recurrent nasopharyngeal carcinomas using single-cell RNA sequencing. Oncoimmunology 2022;11:2026583. https://doi.org/10.1080/2162402X.2022.2026583.

[6]

Zhao J, Guo C, Xiong F et al. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett 2020;477:131-43. https://doi.org/10.1016/j.canlet.2020.02.010.

[7]

Tammela T, Sanchez-Rivera FJ, Cetinbas NM et al. A Wntproducing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 2017;545:355-9. https://doi.org/10.1038/nature22334.

[8]

Lim JS, Ibaseta A, Fischer MM et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 2017;545:360-4. https://doi.org/10.1038/nature22323.

[9]

Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell 2016;164:1226-32. https://doi.org/10.1016/j.cell.2016.01.043.

[10]

Wang X, Xiang Z, Tsao GS et al. Exosomes derived from nasopharyngeal carcinoma cells induce IL-6 production from macrophages to promote tumorigenesis. Cell Mol Immunol 2021;18:501-3. https://doi.org/10.1038/s41423-020-0420-0.

[11]

Sandiford OA, Donnelly RJ, El-Far MH et al. Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res 2021;81:1567-82. https://doi.org/10.1158/0008-5472.CAN-20-2434.

[12]

Li XQ, Zhang R, Lu H et al. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res 2022;82:1560-74. https://doi.org/10.1158/0008-5472.CAN-21-1331.

[13]

Pan Y, Lu X, Shu G et al. Extracellular vesicle-mediated transfer of LncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma. Cancer Res 2023;83:103-16. https://doi.org/10.1158/0008-5472.CAN-21-3432.

[14]

Maacha S, Bhat AA, Jimenez L et al. Extracellular vesiclesmediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019;18:55. https://doi.org/10.1186/s12943-019-0965-7.

[15]

Jiang MJ, Chen YY, Dai JJ et al. Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Mol Cancer 2020;19:68. https://doi.org/10.1186/s12943-020-01178-6.

[16]

Lee PJ, Sui YH, Liu TT et al. Epstein-Barr viral product-containing exosomes promote fibrosis and nasopharyngeal carcinoma progression through activation of YAP1/FAPalpha signaling in fibroblasts. J Exp Clin Cancer Res 2022;41:254. https://doi.org/10.1186/s13046-022-02456-5.

[17]

Shi S, Zhang Q, Xia Y et al. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am J Cancer Res 2016;6:459-72.

[18]

Huang L, Hu C, Chao H et al. Drug-resistant endothelial cells facilitate progression, EMT and chemoresistance in nasopharyngeal carcinoma via exosomes. Cell Signal 2019;63:109385. https://doi.org/10.1016/j.cellsig.2019.109385.

[19]

Qian CN, Berghuis B, Tsarfaty G et al. Preparing the "soil": the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 2006;66:10365-76. https://doi.org/10.1158/0008-5472.CAN-06-2977.

[20]

Menck K, Sonmezer C, Worst TS et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles 2017;6:1378056. https://doi.org/10.1080/20013078.2017.1378056.

[21]

Mori MA, Ludwig RG, Garcia-Martin R et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab 2019;30:656-73. https://doi.org/10.1016/j.cmet.2019.07.011.

[22]

Chang PH, Chen MC, Tsai YP et al. Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer. Proc Natl Acad Sci USA 2021;118:e2014408118. https://doi.org/10.1073/pnas. 2014408118.

[23]

Dusek RL, Attardi LD. Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer 2011;11:317-23. https://doi.org/10.1038/nrc3051.

[24]

Liu YQ, Zou HY, Xie JJ et al. Paradoxical roles of desmosomal components in head and neck cancer. Biomolecules 2021;11:914. https://doi.org/10.3390/biom11060914.

[25]

Roerink SF, Sasaki N, Lee-Six H et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 2018;556:45762. https://doi.org/10.1038/s41586-018-0024-3.

[26]

Bacevic K, Noble R, Soffar A et al. Spatial competition constrains resistance to targeted cancer therapy. Nat Commun 2017;8:1995. https://doi.org/10.1038/s41467-017-01516-1.

[27]

Gatenby RA, Silva AS, Gillies RJ. Frieden BR Adaptive therapy. Cancer Res 2009;69:4894-903. https://doi.org/10.1158/0008-5472.CAN-08-3658.

[28]

Zomer A, Maynard C, Verweij FJ et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 2015;161:1046-57. https://doi.org/10.1016/j.cell.2015.04.042.

[29]

Qu L, Ding J, Chen C et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 2016;29:653-68. https://doi.org/10.1016/j.ccell.2016.03.004.

[30]

Sun Z, Shi K, Yang S et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 2018;17:147. https://doi.org/10.1186/s12943-018-0897-7.

[31]

Wang HY, Li YY, Fu S et al. MicroRNA-30a promotes invasiveness and metastasis in vitro and in vivo through epithelial-mesenchymal transition and results in poor survival of nasopharyngeal carcinoma patients. Exp Biol Med (Maywood) 2014;239:891-8. https://doi.org/10.1177/1535370214532758.

[32]

Pu M, Chen J, Tao Z et al. Regulatory network of miRNA on its target: coordination between transcriptional and posttranscriptional regulation of gene expression. Cell Mol Life Sci 2019;76:441-51. https://doi.org/10.1007/s00018-018-2940-7.

[33]

Yang T, Jia L, Bian S et al. TROP2 Down-regulated DSG2 to promote gastric cancer cell invasion and migration by EGFR/AKT and DSG2/PG/beta-catenin pathways. Curr Cancer Drug Targets 2022;22:691-702. https://doi.org/10.2174/1568009622666220407111013.

[34]

Yang T, Gu X, Jia L et al. DSG 2 expression is low in colon cancer and correlates with poor survival. BMC Gastroenterol 2021;21:7. https://doi.org/10.1186/s12876-020-01588-2.

[35]

Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. J Hematol Oncol 2022;15:131. https://doi.org/10.1186/s13045-022-01351-y.

[36]

Yu D, Li Y, Wang M et al. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022;21:56. https://doi.org/10.1186/s12943-022-01509-9.

AI Summary AI Mindmap
PDF (3367KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/