COVID-19: from immune response to clinical intervention

Zheng-yang Guo , Yan-qing Tang , Zi-bo Zhang , Juan Liu , Yu-xin Zhuang , Ting Li

Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (3) : pbae015

PDF (1712KB)
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (3) :pbae015 DOI: 10.1093/pcmedi/pbae015
Review
research-article

COVID-19: from immune response to clinical intervention

Author information +
History +
PDF (1712KB)

Abstract

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.

Keywords

COVID-19 / immune response / clinical intervention strategies

Cite this article

Download citation ▾
Zheng-yang Guo, Yan-qing Tang, Zi-bo Zhang, Juan Liu, Yu-xin Zhuang, Ting Li. COVID-19: from immune response to clinical intervention. Precision Clinical Medicine, 2024, 7(3): pbae015 DOI:10.1093/pcmedi/pbae015

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by The Science and Technology Development Fund, Macau SAR (Grant Nos. 0058/2020/A, 0018/2023/AMJ).

Author contributions

Conceptualization, Writing-Review & Editing, Funding Acquisition, T.L.; Writing-Original, Draft Preparation, Visualization, Data Curation, Z.-Y.G., Y.-Q.T. and Z.-B.Z.; Writing-Review & Editing, J.L., Y.-X.Z. All authors gave final approval for the submission and agree to be accountable for all aspects of the work. We have obtained the relevant permissions for BioRender (www.biorender.com) and have used the correct permission text as required by the copyright holders.

Conflict of interest

The authors declare no conflict of interest.

References

[1]

Tan W, Zhao X, Ma X et al. A novel coronavirus genome identified in a cluster of pneumonia cases-Wuhan, China 20192020. China CDC weekly 2020;2:61-2. https://doi.org/10.46234/ccdcw2020.017.

[2]

Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80. https://doi.org/10.1016/j.cell.2020.02.052.

[3]

Chekol Abebe E, Mengie Ayele T,Tilahun Muche Z et al. Neuropilin 1: a novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biologics: Targets and Therapy 2021;15:143-52. https://doi.org/10.2147/BTT.S307352.

[4]

Cantuti-Castelvetri L, Ojha R, Pedro LD et al. Neuropilin 1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020;370:856-60. https://doi.org/10.1126/science.abd2985.

[5]

Yan R, Zhang Y, Li Y et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:14448. https://doi.org/10.1126/science.abb2762.

[6]

Kyrou I, Randeva HS, Spandidos DA et al. Not only ACE2-the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduction and Targeted Therapy 2021;6:21. https://doi.org/10.1038/s41392-020-00460-9.

[7]

Ou X, Liu Y, Lei X et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11:1620. https://doi.org/10.1038/s41467-020-15562-9.

[8]

Bayati A, Kumar R, Francis V et al. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 2021;296:100306. https://doi.org/10.1016/j.jbc.2021.100306.

[9]

Jung HE, Lee HK. Current understanding of the innate control of toll-like receptors in response to SARS-CoV-2 infection. Viruses 2021;13:2132. https://doi.org/10.3390/v13112132.

[10]

Martinez FO, Combes TW, Orsenigo F et al. Monocyte activation in systemic Covid-19 infection: assay and rationale. EBioMedicine 2020;59:102964. https://doi.org/10.1016/j.ebiom.2020.102964.

[11]

Qin S, Jiang Y, Wei X et al. Dynamic changes in monocytes subsets in COVID-19 patients. Hum Immunol 2021;82:170-6. https://doi.org/10.1016/j.humimm.2020.12.010.

[12]

Choudhury A, Das NC, Patra R et al. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. J Med Virol 2021;93:2476-86. https://doi.org/doi.org/10.1002/jmv.26776.

[13]

Jafarzadeh A, Chauhan P, Saha B et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 2020;257:118102. https://doi.org/10.1016/j.lfs.2020.118102.

[14]

Bost P, Giladi A, Liu Y et al. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 2020;181:1475-88 https://doi.org/10.1016/j.cell.2020.05.006.

[15]

Kulkarni-Munje A, Palkar S, Shrivastava S et al. Diseaseduration based comparison of subsets of immune cells in SARS CoV-2 infected patients presenting with mild or severe symptoms identifies prognostic markers for severity. Immunity, Inflammation and Disease 2021;9:419-34. https://doi.org/10.1002/iid3.402.

[16]

Onodi F, Bonnet-Madin L, Meertens L et al. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med 2021;218:e20201387. https://doi.org/10.1084/jem.20201387.

[17]

Qin C, Zhou L, Hu Z et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020;71:762-8. https://doi.org/10.1093/cid/ciaa248.

[18]

Middleton EA, He XY, Denorme F et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020;136:1169-79. https://doi.org/10.1182/blood.2020007008.

[19]

Laforge M, Elbim C, Frère C et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020;20:515-6. https://doi.org/10.1038/s41577-020-0407-1.

[20]

Wang F, Nie J, Wang H et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis 2020;221:1762-9. https://doi.org/10.1093/infdis/jiaa150.

[21]

Zheng M, Gao Y, Wang G et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & Molecular Immunology 2020;17:533-5. https://doi.org/10.1038/s41423-020-0402-2.

[22]

Mazzoni A, Salvati L, Maggi L et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest 2020;130:4694-703. https://doi.org/10.1172/JCI138554.

[23]

Market M, Angka L, Martel AB et al. Flattening the COVID-19 curve with natural killer cell based immunotherapies. Front Immunol 2020;11:1512. https://doi.org/10.3389/fimmu.2020.01512.

[24]

Tay MZ, Poh CM, Renia L et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020;20:363-74. https://doi.org/10.1038/s41577-020-0311-8.

[25]

de Wit E, van Doremalen N, Falzarano D et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016;14:523-34. https://doi.org/10.1038/nrmicro.2016.81.

[26]

Chien JY, Hsueh PR, Cheng WC et al. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirol 2006;11:715-22. https://doi.org/10.1111/j.1440-1843.2006.00942.x.

[27]

Le Bert N, Tan AT, Kunasegaran K et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020;584:457-62. https://doi.org/10.1038/s41586-020-2550-z.

[28]

Shahridan Faiez T, Singanayagam A. Down to a T: the functional importance of lymphopenia in severe COVID-19. Am J Respir Crit Care Med 2022;205:1370-2. https://doi.org/10.1164/rccm.202203-0526ED.

[29]

Yang M, Lin C, Wang Y et al. Cytokine storm promoting T cell exhaustion in severe COVID-19 revealed by single cell sequencing data analysis. Precision Clinical Medicine 2022;5:pbac014. https://doi.org/10.1093/pcmedi/pbac014.

[30]

Tarke A, Potesta M, Varchetta S et al. Early and polyantigenic CD4 T cell responses correlate with mild disease in acute COVID-19 donors. Int J Mol Sci 2022;23:7155. https://doi.org/10.3390/ijms23137155.

[31]

Grifoni A, Weiskopf D, Ramirez SI et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181:1489-501 e15. https://doi.org/10.1016/j.cell.2020.05.015.

[32]

Zlei M, Sidorov IA, Joosten SA et al. Immune determinants of viral clearance in hospitalised COVID-19 patients: reduced circulating naive CD4+ T cell counts correspond with delayed viral clearance. Cells 2022;11:2743. https://doi.org/10.3390/cells11172743.

[33]

Peng H, Yang LT, Li J et al. Human memory T cell responses to SARS-CoV E protein. Microbes Infect 2006;8:2424-31. https://doi.org/10.1016/j.micinf.2006.05.008.

[34]

Peng Y, Mentzer AJ, Liu G et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol 2020;21:1336-45. https://doi.org/10.1038/s41590-020-0782-6.

[35]

Taeschler P, Adamo S, Deng Y et al. T-cell recovery and evidence of persistent immune activation 12 months after severe COVID-19. Allergy 2022;77:2468-81. https://doi.org/10.1111/all.15372.

[36]

Aleebrahim-Dehkordi E, Molavi B, Mokhtari M et al. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: from cytokines produced to immune responses. Transpl Immunol 2022;70:101495. https://doi.org/10.1016/j.trim.2021.101495.

[37]

Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O et al. Thelper cell subset response is a determining factor in COVID19 progression. Front Cell Infect Microbiol 2021;11:624483. https://doi.org/10.3389/fcimb.2021.624483.

[38]

Fathi F, Sami R, Mozafarpoor S et al. Immune system changes during COVID-19 recovery play key role in determining disease severity. Int J Immunopathol Pharmacol 2020;34:2058738420966497. https://doi.org/10.1177/2058738420966497.

[39]

De Biasi S, Meschiari M, Gibellini L et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 2020;11:3434. https://doi.org/10.1038/s41467-020-17292-4.

[40]

Mahallawi WH, Khabour OF, Zhang Q et al. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018;104:8-13. https://doi.org/10.1016/j.cyto.2018.01.025.

[41]

Josset L, Menachery VD, Gralinski LE et al. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. mBio 2013;4:e00165-13. https://doi.org/10.1128/mBio.00165-13.

[42]

Kim TO, Park KJ, Cho YN et al. Altered distribution, activation and increased IL-17 production of mucosal-associated invariant T cells in patients with acute respiratory distress syndrome. Thorax 2022;77:865-72. https://doi.org/10.1136/thoraxjnl-2021-217724.

[43]

Becerril-Rico J, Alvarado-Ortiz E, Toledo-Guzmán ME et al. The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Research & Therapy 2021;12:1-14. https://doi.org/10.1186/s13287-021-02562-9.

[44]

Choto TA, Makupe I, Cakana AZ et al. Excessive neutrophil recruitment promotes typical T-helper 17 responses in Coronavirus disease 2019 patients. PLoS One 2022;17:e0273186. https://doi.org/10.1371/journal.pone.0273186.

[45]

Meckiff BJ, Ramirez-Suastegui C, Fajardo V et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4(+) T cells in COVID-19. Cell 2020;183:1340-53 e16. https://doi.org/10.1016/j.cell.2020.10.001.

[46]

Kalfaoglu B, Almeida-Santos J, Tye CA et al. T-cell hyperactivation and paralysis in severe COVID-19 infection revealed by single-cell analysis. Front Immunol 2020;11:589380. https://doi.org/10.3389/fimmu.2020.589380.

[47]

Taefehshokr N, Taefehshokr S, Heit B. Mechanisms of dysregulated humoral and cellular immunity by SARS-CoV-2. Pathogens 2020: 9:1027. https://doi.org/10.3390/pathogens9121027.

[48]

Dhawan M, Rabaan AA, Fawarah MMA et al. Updated insights into the T cell-mediated immune response against SARS-CoV-2: a step towards efficient and reliable vaccines. Vaccines 2023;11:101. https://doi.org/10.3390/vaccines11010101.

[49]

Xie MM, Fang S, Chen Q et al. Follicular regulatory T cells inhibit the development of granzyme B-expressing follicular helper T cells. JCI insight 2019;4:16. https://doi.org/10.1172/jci.insight.12 8076.

[50]

Gong F, Dai Y, Zheng T et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest 2020;130:6588-99. https://doi.org/10.1172/JCI141054.

[51]

Moderbacher CR, Ramirez SI, Dan JM et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020;183:996-1012. https://doi.org/10.1016/j.cell.2020.09.038.

[52]

Zhang J, Wu Q, Liu Z et al. Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nat Microbiol 2021;6:51-8. https://doi.org/10.1038/s41564-020-00824-5.

[53]

Dong Y, Dai T, Wei Y et al. A systematic review of SARS-CoV2 vaccine candidates. Signal Transduction and Targeted Therapy 2020;5:237. https://doi.org/10.1038/s41392-020-00352-y.

[54]

Schulien I, Kemming J, Oberhardt V et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8(+) T cells. Nat Med 2021;27:78-85. https://doi.org/10.1038/s41591-020-01143-2.

[55]

Sekine T, Perez-Potti A, Rivera-Ballesteros O et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 2020;183:158-68. https://doi.org/10.1016/j.cell.2020.08.017.

[56]

Zhou R, To KK, Wong YC et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 2020;53:86477. https://doi.org/10.1016/j.immuni.2020.07.026.

[57]

Song JW, Zhang C, Fan X et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat Commun 2020;11:3410. https://doi.org/10.1038/s41467-020-17240-2.

[58]

Diao B, Wang C, Tan Y et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020;11:827. https://doi.org/10.3389/fimmu.2020.00827.

[59]

Chen G, Wu D, Guo W et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620-9. https://doi.org/10.1172/JCI137244.

[60]

Dan JM, Mateus J, Kato Y et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021;371:eabf4063. https://doi.org/10.1126/science.abf4063.

[61]

McMahan K, Yu J, Mercado NB et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 2021;590:6304. https://doi.org/10.1038/s41586-020-03041-6.

[62]

Reinscheid M, Luxenburger H, Karl V et al. COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation. Nat Commun 2022;13:4631. https://doi.org/10.1038/s41467-022-32324-x.

[63]

Oberhardt V, Luxenburger H, Kemming J et al. Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature 2021;597:268-73. https://doi.org/10.1038/s41586-021-03841-4.

[64]

Khanolkar A. Elucidating T cell and B cell responses to SARS-CoV-2 in humans: gaining insights into protective immunity and immunopathology. Cells 2021;11:67. https://doi.org/10.3390/cells11010067.

[65]

Mansourabadi AH, Aghamajidi A, Dorfaki M et al. B lymphocytes in COVID-19: a tale of harmony and discordance. Arch Virol 2023;168:148. https://doi.org/10.1007/s00705-023-05773-y.

[66]

Iyer AS, Jones FK, Nodoushani A et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol 2020;5:eabe0367. https://doi.org/10.1126/sciimmunol.abe0367.

[67]

Havervall S, Ng H, Jernbom Falk A et al. Robust humoral and cellular immune responses and low risk for reinfection at least 8 months following asymptomatic to mild COVID-19. J Intern Med 2022;291:72-80. https://doi.org/10.1111/joim.13387.

[68]

Cheng ML, Liu HY, Zhao H et al. Longitudinal dynamics of antibody responses in recovered COVID-19 patients. Signal Transduction and Targeted Therapy 2021;6:137. https://doi.org/10.1038/s41392-021-00559-7.

[69]

Choe PG, Kang CK, Suh HJ et al. Waning antibody responses in asymptomatic and symptomatic SARS-CoV-2 infection. Emerg Infect Dis 2021;27:327-9. https://doi.org/10.3201/eid2701.203515.

[70]

Mu S, Song S, Hao Y et al. Neutralizing antibodies from the rare convalescent donors elicited antibody-dependent enhancement of SARS-CoV-2 variants infection. Front Med (Lausanne) 2022;9:952697. https://doi.org/10.3389/fmed.2022.952697.

[71]

Dowling JW, Forero A. Beyond good and evil: molecular mechanisms of type I and III IFN functions. J Immunol 2022;208:247-56. https://doi.org/10.4049/jimmunol.2100707.

[72]

Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell 2020;180:1044-66. https://doi.org/10.1016/j.cell.2020.02.041.

[73]

Cervantes-Barragán L, Kalinke U, Zust R et al. Type I IFNmediated protection of macrophages and dendritic cells secures control of murine coronavirus infection. J Immunol 2009;182:1099-106. https://doi.org/10.4049/jimmunol.182.2.1099.

[74]

Ireland DD, Stohlman SA, Hinton DR et al. Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells. J Virol 2008;82:300-10. https://doi.org/10.1128/JVI.01794-07.

[75]

Pairo-Castineira E, Clohisey S, Klaric L et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021;591:92-8. https://doi.org/10.1038/s41586-020-03065-y.

[76]

Bastard P, Rosen LB, Zhang Q et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020;370:eabd4585. https://doi.org/10.1126/science.abd4585.

[77]

Loske J, Rohmel J, Lukassen S et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV2 infection in children. Nat Biotechnol 2022;40:319-24. https://doi.org/10.1038/s41587-021-01037-9.

[78]

Min YQ, Huang M, Sun X et al. Immune evasion of SARS-CoV2 from interferon antiviral system. Comput Struct Biotechnol J 2021;19:4217-25. https://doi.org/10.1016/j.csbj.2021.07.023.

[79]

Minkoff JM, tenOever B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol 2023;21:178-94. https://doi.org/10.1038/s41579-022-00839-1.

[80]

Liu G, Lee J-H, Parker ZM et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papainlike protease to evade host innate immunity. Nat Microbiol 2021;6:467-78. https://doi.org/10.1038/s41564-021-00884-1.

[81]

Li JY, Liao CH, Wang Q et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res 2020;286:198074. https://doi.org/10.1016/j.virusr es.2020.198074.

[82]

Miorin L, Kehrer T, Sanchez-Aparicio MT et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci USA 2020;117:28344-54. https://doi.org/10.1073/pnas.2016650117.

[83]

Burke JM, St Clair LA, Perera R et al. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA 2021;27:1318-29. https://doi.org/10.1261/rna.078923.121.

[84]

Kasuga Y, Zhu B, Jang KJ et al. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021;53:723-36. https://doi.org/10.1038/s12276-021-00602-1.

[85]

Han L, Zhuang MW, Deng J et al. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways. J Med Virol 2021;93:5376-89. https://doi.org/10.1002/jmv.27050.

[86]

Konno Y, Kimura I, Uriu K et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep 2020;32:12. https://doi.org/10.1016/j.celrep.2020.108185.

[87]

87. Hsu JC, Laurent-Rolle M, Pawlak JB et al. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc Natl Acad Sci USA 2021;118:e2101161118. https://doi.org/10.1073/pnas.2101161118.

[88]

Blanco-Melo D, Nilsson-Payant BE, Liu WC et al. Imbalanced host response to SARS-CoV-2 drives development of COVID19. Cell 2020;181:1036-45. https://doi.org/10.1016/j.cell.2020.04.026.

[89]

Ruan Q, Yang K, Wang W et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8. https://doi.org/10.1007/s00134-020-05991-X.

[90]

Del Valle DM, Kim-Schulze S, Huang HH et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020;26:1636-43. https://doi.org/10.1038/s41591-020-1051-9.

[91]

Kapten K, Orczyk K, Smolewska E. Immunity in SARS-CoV-2 infection: clarity or mystery? A broader perspective in the third year of a worldwide pandemic. Arch Immunol Ther Exp (Warsz) 2023;71:7. https://doi.org/10.1007/s00005-023-00673-0.

[92]

Hasanvand A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology 2022;30:789-98. https://doi.org/10.1007/s10787-022-00992-2.

[93]

Manetti AC, Maiese A, Paolo MD et al. MicroRNAs and sepsisinduced cardiac dysfunction: A systematic review. Int J Mol Sci 2020;22:321. https://doi.org/10.3390/ijms22010321.

[94]

Wang EY, Mao T, Klein J et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021;595:283-8. https://doi.org/10.1038/s41586-021-03631-y.

[95]

Bastard P, Gervais A,Le Voyer T et al. Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for 20% of COVID-19 deaths. Sci Immunol 2021;6:eabl4340. https://doi.org/10.1126/sciimmunol.abl4340.

[96]

Lv J, Wang Z, Qu Y et al. Distinct uptake, amplification, and release of SARS-CoV-2 by M1 and M2 alveolar macrophages. Cell Discov 2021;7:24. https://doi.org/10.1038/s41421-021-00258-1.

[97]

Li G, Hilgenfeld R, Whitley R et al. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023;22:449-75. https://doi.org/10.1038/s41573-023-00672-y.

[98]

Gao Z, Xu Y, Sun C et al. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect 2021;54:126. https://doi.org/10.1016/j.jmii.2020.05.001.

[99]

Luo SH, Liu W, Liu ZJ et al. A confirmed asymptomatic carrier of 2019 novel coronavirus. Chin Med J (Engl) 2020;133:1123-5. https://doi.org/10.1097/CM9.0000000000000798.

[100]

Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E et al. Emerging treatment strategies for COVID-19 infection. Clin Exp Med 2021;21:167-79. https://doi.org/10.1007/s10238-020-00671-y.

[101]

Cauchois R, Koubi M, Delarbre D et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci USA 2020;117:18951-3. https://doi.org/10.1073/pnas.2009017117.

[102]

Kooistra EJ, Waalders NJB, Grondman I et al. Anakinra treatment in critically ill COVID-19 patients: a prospective cohort study. Crit Care 2020;24:688. https://doi.org/10.1186/s13054-020-03364-w.

[103]

Caricchio R, Abbate A, Gordeev I et al. Effect of canakinumab vs placebo on survival without invasive mechanical ventilation in patients hospitalized with severe COVID-19: a randomized clinical trial. JAMA 2021;326:230-9. https://doi.org/10.1001/jama.2021.9508.

[104]

Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016;8:959-70. https://doi.org/10.2217/imt-2016-0020.

[105]

Luo P, Liu Y, Qiu L et al. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol 2020;92:814-8. https://doi.org/10.1002/jmv.25801.

[106]

Sciascia S, Aprà F, Baffa A et al. Pilot prospective open, singlearm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol 2020;38:52932,

[107]

Boregowda U, Perisetti A, Nanjappa A et al. Addition of Tocilizumab to the standard of care reduces mortality in severe COVID-19: A systematic review and meta-analysis. Front Med (Lausanne) 2020;7:586221. https://doi.org/10.3389/fmed.2020.586221.

[108]

Benucci M, Giannasi G, Cecchini P et al. COVID-19 pneumonia treated with sarilumab: a clinical series of eight patients. J Med Virol 2020;92:2368. https://doi.org/10.1002/jmv.26062.

[109]

Mahmoudjafari Z, Hawks KG, Hsieh AA et al. American Society for Blood and Marrow Transplantation Pharmacy Special Interest Group Survey on chimeric antigen receptor T cell therapy administrative, logistic, and toxicity management practices in the United States. Biol Blood Marrow Transplant 2019;25:26-33. https://doi.org/10.1016/j.bbmt.2018.09.024.

[110]

Tao S, Chen Y, Wu J et al. VDDB: A comprehensive resource and machine learning tool for antiviral drug discovery. MedCommFuture Medicine 2023;2:e32. https://doi.org/10.1002/mef2.32.

[111]

Group RC. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693-704. https://doi.org/10.1056/NEJMoa2021436.

[112]

Sterne JA, Murthy S, Diaz JV et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 2020;324:1330-41. https://doi.org/10.1001/jama.2020.17023.

[113]

Ning W, Lei S, Yang J et al. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat Biomed Eng 2020;4:1197-207. https://doi.org/10.1038/s41551-020-00633-5.

[114]

Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Reu Immunol 2013;13:176-89. https://doi.org/10.1038/nri3401.

[115]

Ross C, Svenson M, Hansen MB et al. High avidity IFNneutralizing antibodies in pharmaceutically prepared human IgG. J Clin Invest 1995;95:1974-8. https://doi.org/10.1172/JCI117881.

[116]

Hung IFN, To KKW, Lee CK et al. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013;144:464-73. https://doi.org/10.1378/chest.12-2907.

[117]

Tabarsi P, Barati S, Jamaati H et al. Evaluating the effects of intravenous Immunoglobulin (IVIg) on the management of severe COVID-19 cases: A randomized controlled trial. Int Immunopharmacol 2021;90:107205. https://doi.org/10.1016/j.intimp.2020.107205.

[118]

Philips RL, Wang Y, Cheon H et al. The JAK-STAT pathway at 30 : much learned, much more to do. Cell 2022;185:3857-76, https://doi.org/10.1016/j.cell.2022.09.023.

[119]

Stebbing J, Sanchez Nievas G, Falcone M et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Sci Adv 2021;7:eabe4724. https://doi.org/10.1126/sciadv.abe4724.

[120]

Richardson P, Griffin I, Tucker C et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet North Am Ed 2020;395:e30-e1. https://doi.org/10.1016/S0140-6736(20)30304-4.

[121]

Guimarães PO, Quirk D, Furtado RH et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N Engl J Med 2021;385:406-15. https://doi.org/10.1056/NEJMoa2101643.

[122]

Brunetti L, Diawara O, Tsai A et al. Colchicine to weather the Cytokine storm in hospitalized patients with COVID-19. J Clin Med 2020;9:2961. https://doi.org/10.3390/jcm9092961.

[123]

Hariyanto TI, Halim DA, Jodhinata C et al. Colchicine treatment can improve outcomes of coronavirus disease 2019 (COVID19): a systematic review and meta-analysis. Clin Exp Pharmacol Physiol 2021;48:823-30. https://doi.org/10.1111/1440-1681.13488.

[124]

Liu C, Zhou Q, Li Y et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related human Coronavirus Diseases. Washington DC: ACS Publications, 2020. https://doi.org/https://doi.org/10.1021/acscentsci.0c00272.

[125]

Qiu Y, Li Z, Lin F et al. Comparison of the disease severity with infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta and Omicron variants: A meta-analysis. MedComm-Future Medicine 2023;2:e39. https://doi.org/10.1002/mef2.39.

[126]

126. Uraki R, Ito M, Kiso M et al. Antiviral and bivalent vaccine efficacy against an omicron XBB. 1.5 isolate. Lancet Infect Dis 2023;23:402-3. https://doi.org/10.1016/S1473-3099(23)00070-1.

[127]

Ghasemiyeh P, Mohammadi-Samani S. Lessons we learned during the past four challenging years in the COVID-19 era: pharmacotherapy, long COVID complications, and vaccine development. Virol J 2024;21:98. https://doi.org/10.1186/s12985-024-02370-6.

[128]

128. Xu YG, Weng MZ, Zhang JY et al. Combination of N-(3'4'-dimethoxycinnamoyl) anthranilic acid with cyclosporin A treatment preserves immunosuppressive effect and reduces the side effect of cyclosporin A in rat. Eur J Pharmacol 2014;728:16-23. https://doi.org/10.1016/j.ejphar.2014.01.055.

[129]

Chen P, Nirula A, Heller B et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med 2021;384:229-37. https://doi.org/10.1056/NEJMoa2029849.

[130]

Westendorf K, Žentelis S, Wang L et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 2022;39:7. https://doi.org/10.1016/j.celrep.2022.110812.

[131]

Ali MG, Zhang Z, Gao Q et al. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020;68:325-39. https://doi.org/10.1007/s12026-020-09159-z.

[132]

Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol 2020;88:106924. https://doi.org/10.1016/j.intimp.2020.106924.

[133]

Pinto D, Park YJ, Beltramello M et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020;583:290-5. https://doi.org/10.1038/s41586-020-2349y.

[134]

Liu Y, Wang K, Massoud TF et al. SARS-CoV-2 vaccine development: an overview and perspectives. ACS Pharmacol Transl Sci 2020;3:844-58. https://doi.org/10.1021/acsptsci.0c00109.

[135]

Sheikhshahrokh A, Ranjbar R, Saeidi E et al. Frontier Therapeutics and Vaccine Strategies for SARS-CoV-2 (COVID-19): A review. Iran J Public Health 2020;49:18-29. https://doi.org/10.18502/ijph.v49iS1.3666.

[136]

Haque A, Pant AB. Mitigating Covid-19 in the face of emerging virus variants, breakthrough infections and vaccine hesitancy. J Autoimmun 2022;127:102792. https://doi.org/10.1016/j.jaut.2021.102792.

[137]

Callaway E. The Coronavirus Is Mutating-Does It Matter? London, UK: Nature Publishing Group, 2020.

[138]

Shekhar R, Garg I, Pal S et al. COVID-19 vaccine booster: to boost or not to boost. Infect Dis Rep 2021;13:924-9. https://doi.org/10.3390/idr13040084.

[139]

Thomas SJ, Moreira ED, Jr, Kitchin N et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med 2021; 385 (19): 1761-73. https://doi.org/10.1056/NEJMoa2034577.

[140]

Dolgin E. COVID vaccine immunity is waning-How much does that matter? Nature 2021;597:606-7. https://doi.org/10.1038/d41586-021-02532-4.

[141]

Venkatesan P. NICE guideline on long COVID. The Lancet Respiratory medicine 2021;9:129. https://doi.org/10.1016/S2213-2600(21)00031-X.

[142]

Shah W, Hillman T, Playford ED et al. Managing the long term effects of covid-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021;372:n136. https://doi.org/10.1136/bmj.n136.

[143]

Marjenberg Z, Leng S, Tascini C et al. Risk of long COVID main symptoms after SARS-CoV-2 infection: a systematic review and meta-analysis. Sci Rep 2023;13:15332. https://doi.org/10.1038/s41598-023-42321-9.

[144]

Seo J-W, Kim SE, Kim Y et al. Updated clinical practice guidelines for the diagnosis and management of long COVID. Infection & Chemotherapy 2024;56:122. https://doi.org/10.3947/ic.2024.0024.

[145]

Bartone PT, McDonald K, Hansma BJ et al. Hardiness moderates the effects of COVID-19 stress on anxiety and depression. J Affect Disord 2022;317:236-44. https://doi.org/10.1016/j.jad.2022.08.045.

[146]

Fernández-de-Las-Peñas C, Raveendran AV, Giordano R et al. Long COVID or Post-COVID-19 condition: past, present and future research directions. Microorganisms 2023;11:2959. https://doi.org/10.3390/microorganisms11122959.

AI Summary AI Mindmap
PDF (1712KB)

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/