Strategies for craniofacial tissue engineering: innovations for scalable bone regeneration

Sofia M. Vignolo , Daniela M. Roth , Lillian Wu , Jameson Cosgrove , Luiz E. Bertassoni

Plastic and Aesthetic Research ›› 2025, Vol. 12 ›› Issue (1) : 20

PDF
Plastic and Aesthetic Research ›› 2025, Vol. 12 ›› Issue (1) :20 DOI: 10.20517/2347-9264.2025.09
Review

Strategies for craniofacial tissue engineering: innovations for scalable bone regeneration

Author information +
History +
PDF

Abstract

Craniofacial tissue engineering offers promising solutions for addressing large bone defects caused by congenital abnormalities, trauma, or disease. Traditional approaches, such as autografts and synthetic materials, are widely used but face limitations, including donor site morbidity, immune rejection, and poor graft integration. Recent advancements in biomaterials, including nanoscale scaffold design, bioceramics, cell-laden hydrogels, and bioactive modifications, present promising strategies to replicate the biological, mechanical, and structural properties of native bone. This review explores innovative strategies to enhance osteoconductivity, osteoinductivity, and osteogenicity of engineered grafts, including the use of advanced biomaterials, immunomodulatory scaffolds, and bioprinting technologies. Key biological challenges are discussed alongside translational barriers. Future directions emphasize the integration of bioprinted, vascularized, multiphasic tissues, alongside personalized therapies and advanced fabrication techniques, to accelerate clinical adoption. By bridging nanoscale innovations with the demands of large-scale clinical application, this review outlines pathways toward scalable, personalized, and clinically effective solutions to restore functionality and aesthetics in craniofacial reconstruction.

Keywords

Bone regeneration / craniofacial tissue / tissue engineering / advanced biomaterials / translation / regenerative medicine

Cite this article

Download citation ▾
Sofia M. Vignolo, Daniela M. Roth, Lillian Wu, Jameson Cosgrove, Luiz E. Bertassoni. Strategies for craniofacial tissue engineering: innovations for scalable bone regeneration. Plastic and Aesthetic Research, 2025, 12(1): 20 DOI:10.20517/2347-9264.2025.09

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou T,Ge C,Ma PX.Synthetic helical peptides on nanofibers to activate cell-surface receptors and synergistically enhance critical-sized bone defect regeneration.Bioact Mater2025;43:98-113 PMCID:PMC11458538

[2]

Giese H,Unterberg A.Long-term complications and implant survival rates after cranioplastic surgery: a single-center study of 392 patients.Neurosurg Rev2021;44:1755-63 PMCID:PMC8121727

[3]

Koller M,Shok G,Kiaei S.A retrospective descriptive study of cranioplasty failure rates and contributing factors in novel 3D printed calcium phosphate implants compared to traditional materials.3D Print Med2020;6:14 PMCID:PMC7298748

[4]

Herring SW.Mechanical influences on suture development and patency.Front Oral Biol2008;12:41-56 PMCID:PMC2826139

[5]

Vidal L,Brennan ,Layrolle P.Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing.Front Bioeng Biotechnol2020;8:61 PMCID:PMC7029716

[6]

Qi J,Hu B,Ouyang H.Current biomaterial-based bone tissue engineering and translational medicine.Int J Mol Sci2021;22:10233 PMCID:PMC8508818

[7]

Gillman CE.FDA-approved bone grafts and bone graft substitute devices in bone regeneration.Mater Sci Eng C Mater Biol Appl2021;130:112466 PMCID:PMC8555702

[8]

Dimitriou R,McGonagle D.Bone regeneration: current concepts and future directions.BMC Med2011;9:66 PMCID:PMC3123714

[9]

Wong CHB.Prevention and management of complications from Le Fort I osteotomy.Curr Probl Surg2024;61:101635

[10]

Liantis P,Stavropoulos NA.Risk factors for and complications of distraction osteogenesis.Eur J Orthop Surg Traumatol2014;24:693-8

[11]

Brody-Camp S.Craniofacial distraction osteogenesis. Treasure Island (FL): StatPearls Publishing; 2023.

[12]

Peterson J,Dechow PC.Material properties of the dentate maxilla.Anat Rec A Discov Mol Cell Evol Biol2006;288:962-72

[13]

Shahzad F.Pediatric mandible reconstruction: controversies and considerations.Plast Reconstr Surg Glob Open2020;8:e3285 PMCID:PMC7787291

[14]

Liang C,Profico A.A physico-mechanical model of postnatal craniofacial growth in human.iScience2024;27:110617 PMCID:PMC11365398

[15]

Zawiślak E,Frątczak R.Impact of osteotomy in surgically assisted rapid maxillary expansion using tooth-borne appliance on the formation of stresses and displacement patterns in the facial skeleton-a study using finite element analysis (FEA).Applied Sciences2020;10:8261

[16]

Du W,Hu JK.FACEts of mechanical regulation in the morphogenesis of craniofacial structures.Int J Oral Sci2021;13:4 PMCID:PMC7865003

[17]

Tian T,Lin Y.Vascularization in craniofacial bone tissue engineering.J Dent Res2018;97:969-76

[18]

Libby J,Johnson D,Fagan MJ.Modelling human skull growth: a validated computational model.J R Soc Interface2017;14:20170202 PMCID:PMC5454308

[19]

Benulič Č,Rasio N,Kristan A.Mechanobiology of indirect bone fracture healing under conditions of relative stability: a narrative review for the practicing clinician.Acta Biomed2022;92:e2021582 PMCID:PMC9437681

[20]

Rolvien T,Wenisch S,Krause M.Cellular mechanisms responsible for success and failure of bone substitute materials.Int J Mol Sci2018;19:2893 PMCID:PMC6213546

[21]

Sheen JR,Garla VV.Fracture healing overview. Treasure Island (FL): StatPearls Publishing; 2025.

[22]

Glatt V,Tetsworth K.A concert between biology and biomechanics: the influence of the mechanical environment on bone healing.Front Physiol2016;7:678 PMCID:PMC5258734

[23]

Anani T.Mechanically-regulated bone repair.Bone2022;154:116223

[24]

Ivanjac F,Lazić V,Ihde S.Assessment of stability of craniofacial implants by resonant frequency analysis.J Craniofac Surg2016;27:e185-9

[25]

Oliveira CS,Mano JF.New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments.APL Bioeng2021;5:041507 PMCID:PMC8568480

[26]

Griffin KS,Mckinley TO.Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration.Clinic Rev Bone Miner Metab2015;13:232-44

[27]

Cheng K,Mei Y.The bone nonunion microenvironment: a place where osteogenesis struggles with osteoclastic capacity.Heliyon2024;10:e31314 PMCID:PMC11133820

[28]

Thomas MV.Infection, inflammation, and bone regeneration: a paradoxical relationship.J Dent Res2011;90:1052-61 PMCID:PMC3169879

[29]

Liu H,Zhang Y.Inflammation, mesenchymal stem cells and bone regeneration.Histochem Cell Biol2018;149:393-404

[30]

Zhang Q,Li Y,Wang D.Analysis of risk indicators for implant failure in patients with chronic periodontitis.BMC Oral Health2024;24:1051 PMCID:PMC11382459

[31]

Salthouse D,Hilkens CMU.Interplay between biomaterials and the immune system: challenges and opportunities in regenerative medicine.Acta Biomater2023;155:1-18

[32]

Cornell RS,Steinberg JS.Débridement of the noninfected wound.J Vasc Surg2010;52:31S-6

[33]

Mata R,Cao W.The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials.Research2021;2021:4189516 PMCID:PMC7879376

[34]

Cheng A,Krishnan L.Early systemic immune biomarkers predict bone regeneration after trauma.Proc Natl Acad Sci U S A2021;118:e2017889118 PMCID:PMC7923361

[35]

Zhang H,Wang G.Single-cell RNA sequencing reveals B cells are important regulators in fracture healing.Front Endocrinol2021;12:666140 PMCID:PMC8606664

[36]

Hankenson KD,Gray C.Angiogenesis in bone regeneration.Injury2011;42:556-61 PMCID:PMC3105195

[37]

Bai L,Li G,Chen X.Engineering bone/cartilage organoids: strategy, progress, and application.Bone Res2024;12:66 PMCID:PMC11579019

[38]

Bahney CS,Miclau T 3rd.The multifaceted role of the vasculature in endochondral fracture repair.Front Endocrinol2015;6:4 PMCID:PMC4318416

[39]

Bixel MG,Timmen M.Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration.Nat Commun2024;15:4575 PMCID:PMC11150404

[40]

Nadine S,Correia CR.Close-to-native bone repair via tissue-engineered endochondral ossification approaches.iScience2022;25:105370 PMCID:PMC9626746

[41]

Maggio N, Banfi A. The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity.Curr Opin Biotechnol2022;76:102750

[42]

Liu X,Gu Y,Liu Y.Type H vessels: functions in bone development and diseases.Front Cell Dev Biol2023;11:1236545 PMCID:PMC10687371

[43]

O’Connor C,Zheng Y,Stevens KR.Engineering the multiscale complexity of vascular networks.Nat Rev Mater2022;7:702-16 PMCID:PMC9154041

[44]

Chen M,Huang X.Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis.Bone Res2021;9:21 PMCID:PMC7985324

[45]

Stegen S.The skeletal vascular system - breathing life into bone tissue.Bone2018;115:50-8

[46]

Hao S,Yin Z,Bai L.Microenvironment-targeted strategy steers advanced bone regeneration.Mater Today Bio2023;22:100741 PMCID:PMC10413201

[47]

Nadine S,Mano JF.Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration.Biomater Adv2022;140:213058

[48]

Rowe P,Sharma S.Physiology, bone remodeling. Treasure Island (FL): StatPearls Publishing; 2025.

[49]

Zidrou C,Rizou S.The effect of drugs on implant osseointegration- a narrative review.Injury2023;54:110888

[50]

Gittens RA,Schwartz Z.Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants.Acta Biomater2014;10:3363-71 PMCID:PMC4103432

[51]

Frost HM.A synchronous group of mammallian cells whose in vivo behavior can be studied.Henry Ford Hosp Med Bull1965;13:161-72

[52]

Delaisse JM,Kristensen HB,Andreasen CM.Re-thinking the bone remodeling cycle mechanism and the origin of bone loss.Bone2020;141:115628

[53]

Bolamperti S,Rubinacci A.Bone remodeling: an operational process ensuring survival and bone mechanical competence.Bone Res2022;10:48 PMCID:PMC9293977

[54]

Julien A,Martínez-Sarrà E.Direct contribution of skeletal muscle mesenchymal progenitors to bone repair.Nat Commun2021;12:2860 PMCID:PMC8128920

[55]

Wei S,Xu L,Ma XL.Biodegradable materials for bone defect repair.Mil Med Res2020;7:54 PMCID:PMC7653714

[56]

Henkel J,Epari DR.Bone regeneration based on tissue engineering conceptions - a 21st century perspective.Bone Res2013;1:216-48 PMCID:PMC4472104

[57]

Ercal P.A current overview of scaffold-based bone regeneration strategies with dental stem cells.Adv Exp Med Biol2020;1288:61-85

[58]

Hutmacher DW,Lam CX,Lim TC.State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.J Tissue Eng Regen Med2007;1:245-60

[59]

Tajvar S,Samandari SS.Scaffold degradation in bone tissue engineering: an overview.Int Biodeterior Biodegrad2023;180:105599

[60]

O’Keefe RJ.Bone tissue engineering and regeneration: from discovery to the clinic--an overview.Tissue Eng Part B Rev2011;17:389-92 PMCID:PMC3223012

[61]

McGovern JA,Hutmacher DW.Animal models for bone tissue engineering and modelling disease.Dis Model Mech2018;11:dmm033084 PMCID:PMC5963860

[62]

Lopes D,Oliveira MB.Bone physiology as inspiration for tissue regenerative therapies.Biomaterials2018;185:240-75 PMCID:PMC6445367

[63]

Baptista LS,Kronemberger GS,Perrault CM.3D organ-on-a-chip: the convergence of microphysiological systems and organoids.Front Cell Dev Biol2022;10:1043117 PMCID:PMC9720174

[64]

Lam EHY,Zhu S.3D bioprinting for next-generation personalized medicine.Int J Mol Sci2023;24:6357 PMCID:PMC10094501

[65]

Yang S,Kung H.Organoids: the current status and biomedical applications.MedComm2023;4:e274 PMCID:PMC10192887

[66]

Genova T,Carossa M,Cavagnetto D.Advances on bone substitutes through 3D bioprinting.Int J Mol Sci2020;21:7012 PMCID:PMC7582371

[67]

Chen FM.Advancing biomaterials of human origin for tissue engineering.Prog Polym Sci2016;53:86-168 PMCID:PMC4808059

[68]

Schot M,van Loo B,Leijten J.Scalable fabrication, compartmentalization and applications of living microtissues.Bioact Mater2023;19:392-405 PMCID:PMC9062422

[69]

Smith IO,Smith LA.Nanostructured polymer scaffolds for tissue engineering and regenerative medicine.Wiley Interdiscip Rev Nanomed Nanobiotechnol2009;1:226-36 PMCID:PMC2800311

[70]

Amini AR,Nukavarapu SP.Bone tissue engineering: recent advances and challenges.Crit Rev Biomed Eng2012;40:363-408 PMCID:PMC3766369

[71]

Hixon KR,Pendyala M,Sell SA.Scaffolds for use in craniofacial bone regeneration.Methods Mol Biol2022;2403:223-34

[72]

Zhao X,Zhang Z.Beyond hype: unveiling the real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids.J Nanobiotechnology2024;22:500 PMCID:PMC11337604

[73]

Zhao X,Wu D.Applications of biocompatible scaffold materials in stem cell-based cartilage tissue engineering.Front Bioeng Biotechnol2021;9:603444 PMCID:PMC8026885

[74]

Breeland G,Menezes RG.Embryology, bone ossification. Treasure Island (FL): StatPearls Publishing; 2025.

[75]

Barlian A.Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: potency and future perspective.Future Sci OA2022;8:FSO765 PMCID:PMC8656311

[76]

Hu B,Zhao Y,Shen R.Physiological signatures of dual embryonic origins in mouse skull vault.Cell Physiol Biochem2017;43:2525-34

[77]

Ichikawa Y,Nampo T.Differences in the developmental origins of the periosteum may influence bone healing.J Periodontal Res2015;50:468-78

[78]

Wu T,Tian F.Contribution of cranial neural crest cells to mouse skull development.Int J Dev Biol2017;61:495-503

[79]

Vandeputte T,Tramini P.Comparison between combined cortical and cancellous bone graft and cancellous bone graft in alveolar cleft: retrospective study of complications during the first six months post-surgery.J Craniomaxillofac Surg2020;48:38-42

[80]

Sheikh Z,Glogauer M.Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation.Materials2015;8:2953-93

[81]

Kirchner JE,Powell BJ,Proctor EK.Getting a clinical innovation into practice: an introduction to implementation strategies.Psychiatry Res2020;283:112467 PMCID:PMC7239693

[82]

Sallent I,Procter P.The few who made it: commercially and clinically successful innovative bone grafts.Front Bioeng Biotechnol2020;8:952 PMCID:PMC7490292

[83]

de Carvalho ABG,Oliveira RLMS.Personalized bioceramic grafts for craniomaxillofacial bone regeneration.Int J Oral Sci2024;16:62 PMCID:PMC11528123

[84]

Maciel PP,Medeiros ELGD.Use of strontium doping glass-ceramic material for bone regeneration in critical defect: in vitro and in vivo analyses.Ceram Int2020;46:24940-54

[85]

Lodoso-Torrecilla I,Jansen JA.Calcium phosphate cements: optimization toward biodegradability.Acta Biomater2021;119:1-12

[86]

Sheikh Z,Hanafi AA,Rashid H.Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials.Materials2015;8:7913-25 PMCID:PMC5458904

[87]

Chng HK,Yap AU,Koh ET.Properties of a new root-end filling material.J Endod2005;31:665-8

[88]

Shuai C,Gao C.Calcium silicate improved bioactivity and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds.Polymers2017;9:175 PMCID:PMC6432408

[89]

Lin K,Huang H,Wang Z.Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.J Mater Sci Mater Med2015;26:197

[90]

Qi X,Zhang Y.Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects.Int J Biol Sci2018;14:471-84 PMCID:PMC5930479

[91]

Rahaman MN,Bal BS.Bioactive glass in tissue engineering.Acta Biomater2011;7:2355-73 PMCID:PMC3085647

[92]

Sanz-Herrera JA.Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds.Int J Solids Struct2011;48:257-68

[93]

Lai W,Ducheyne P.Silicon excretion from bioactive glass implanted in rabbit bone.Biomaterials2002;23:213-7

[94]

Dewey MJ.Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair.RSC Adv2021;11:17809-27 PMCID:PMC8443006

[95]

Castañeda-Rodríguez S,Ribas-Aparicio RM.Recent advances in modified poly (lactic acid) as tissue engineering materials.J Biol Eng2023;17:21 PMCID:PMC10029204

[96]

da Silva D,Poley M.Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems.Chem Eng J2018;340:9-14 PMCID:PMC6682490

[97]

Donnaloja F,Soncini M.Natural and synthetic polymers for bone scaffolds optimization.Polymers2020;12:905 PMCID:PMC7240703

[98]

Dwivedi R,Pandey R.Polycaprolactone as biomaterial for bone scaffolds: review of literature.J Oral Biol Craniofac Res2020;10:381-8 PMCID:PMC6854079

[99]

Zhang D,Petersen KM,Hahn MS.A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.Acta Biomater2014;10:4597-605

[100]

Bartnikowski M,Ivanovski S.Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment.Progress in Polymer Science2019;96:1-20

[101]

Göktürk E.Biomedical applications of polyglycolic acid (PGA).Sak Univ J Sci2017;21:1237-44

[102]

Wu DT,Cho YW.Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine.Molecules2021;26:7043 PMCID:PMC8621873

[103]

Wu E,Shen Y.Application of gelatin-based composites in bone tissue engineering.Heliyon2024;10:e36258 PMCID:PMC11367464

[104]

Manoukian OS,Stedman T.Biomaterials for tissue engineering and regenerative medicine. In: Roger N, Editor. Encyclopedia of biomedical engineering. Oxford: Elsevier; 2019. pp. 462-82.

[105]

Wang JZ,Ding ZQ.A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers.Mater Sci Eng C Mater Biol Appl2019;97:1021-35

[106]

Reid B,Singh A.PEG hydrogel degradation and the role of the surrounding tissue environment.J Tissue Eng Regen Med2015;9:315-8 PMCID:PMC4819972

[107]

Chocholata P,Babuska V.Fabrication of scaffolds for bone-tissue regeneration.Materials2019;12:568 PMCID:PMC6416573

[108]

Pourhajrezaei S,Khalili MA.Bioactive polymers: a comprehensive review on bone grafting biomaterials.Int J Biol Macromol2024;278:134615

[109]

Thrivikraman G,Twohig C,Bertassoni LE.Biomaterials for craniofacial bone regeneration.Dent Clin North Am2017;61:835-56 PMCID:PMC5663293

[110]

Kolk A,Drescher W.Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.J Craniomaxillofac Surg2012;40:706-18

[111]

Kinney RC,Hirshorn K,Ganey T.Demineralized bone matrix for fracture healing: fact or fiction?.J Orthop Trauma2010;24:S52-5

[112]

Ren J,Liu W.Demineralized bone matrix for repair and regeneration of maxillofacial defects: a narrative review.J Dent2024;143:104899

[113]

Rashid AB,Hoque ME.Gelatin-based scaffolds: an intuitive support structure for regenerative therapy.Curr Opin Biomed Eng2023;26:100452

[114]

Lukin I,Maeso L.Progress in gelatin as biomaterial for tissue engineering.Pharmaceutics2022;14:1177 PMCID:PMC9229474

[115]

Kozusko SD,Goulart M,Jing XL.Chitosan as a bone scaffold biomaterial.J Craniofac Surg2018;29:1788-93

[116]

Costa-Pinto AR,Neves NM.Scaffolds based bone tissue engineering: the role of chitosan.Tissue Eng Part B Rev2011;17:331-47

[117]

Muzzarelli R,Filippini O,Biagini G.Antimicrobial properties of N-carboxybutyl chitosan.Antimicrob Agents Chemother1990;34:2019-23 PMCID:PMC171983

[118]

Signorini L,Facente A.Critical overview on pure chitosan-based scaffolds for bone tissue engineering: clinical insights in dentistry.Int J Med Sci2023;20:1527-34 PMCID:PMC10583188

[119]

Kowalczewski CJ.Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration.Front Pharmacol2018;9:513 PMCID:PMC5986909

[120]

Kundu B,Kundu SC.Silk fibroin biomaterials for tissue regenerations.Adv Drug Deliv Rev2013;65:457-70

[121]

Esposito M,Papanikolaou N,Worthington HV.Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects.Cochrane Database Syst Rev2009;2009:CD003875 PMCID:PMC6786880

[122]

Garimella A,Bandyopadhyay-Ghosh S.Biomaterials for bone tissue engineering: achievements to date and future directions.Biomed Mater2024;20:012001

[123]

De Santis D,Dario D.Custom bone regeneration (CBR): an alternative method of bone augmentation-a case series study.J Clin Med2022;11:4739 PMCID:PMC9409981

[124]

S AD,Naveen J,Khahro SH.Advancement in biomedical implant materials-a mini review.Front Bioeng Biotechnol2024;12:1400918 PMCID:PMC11252025

[125]

Luhr HG.A micro-system for cranio-maxillofacial skeletal fixation. Preliminary report.J Craniomaxillofac Surg1988;16:312-4

[126]

Luhr HG.Vitallium Luhr systems for reconstructive surgery of the facial skeleton.Otolaryngol Clin North Am1987;20:573-606

[127]

Flores Fraile J,García de Castro Andews A.Safety and efficacy of a new synthetic material based on monetite, silica gel, PS-wallastonite, and a hydroxyapatite calcium deficient: a randomized comparative clinic trial.Medicina2020;56:46 PMCID:PMC7073755

[128]

Xia D,Zheng Y,Zhou Y.Research status of biodegradable metals designed for oral and maxillofacial applications: a review.Bioact Mater2021;6:4186-208 PMCID:PMC8379348

[129]

Shuai C,Peng S,Lai Y.Biodegradable metallic bone implants.Mater Chem Front2019;3:544-62

[130]

Vujović S,Stanišić D,Stevanovic M.Applications of biodegradable magnesium-based materials in reconstructive oral and maxillofacial surgery: a review.Molecules2022;27:5529 PMCID:PMC9457564

[131]

Schendel SA.Magnesium-based bone cement and bone void filler: preliminary experimental studies.J Craniofac Surg2009;20:461-4

[132]

Diao J,Deng T.3D-plotted beta-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model.Adv Healthc Mater2018;7:e1800441 PMCID:PMC6355155

[133]

Qin H,Han J.3D printed bioceramic scaffolds: adjusting pore dimension is beneficial for mandibular bone defects repair.J Tissue Eng Regen Med2022;16:409-21

[134]

Sow WT,Chen L.Freeze-casted keratin matrix as an organic binder to integrate hydroxyapatite and BMP2 for enhanced cranial bone regeneration.Adv Healthc Mater2023;12:e2201886

[135]

Gwon Y,Kim W,Kim H.Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration.J Biol Eng2021;15:12 PMCID:PMC7986475

[136]

Wang X,Wang J.Matrix stiffness regulates osteoclast fate through integrin-dependent mechanotransduction.Bioact Mater2023;27:138-53 PMCID:PMC10090259

[137]

Qiao W,Shen J.TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration.Nat Commun2021;12:2885 PMCID:PMC8128914

[138]

Bakshi R,Khalil D.A chemotactic functional scaffold with VEGF-releasing peptide amphiphiles facilitates bone regeneration by BMP-2 in a large-scale rodent cranial defect model.Plast Reconstr Surg2021;147:386-97

[139]

Daculsi G,Miramond T.Osteoconduction, osteogenicity, osteoinduction, what are the fundamental properties for a smart bone substitutes.IRBM2013;34:346-8

[140]

Lopez CD,Witek L.Regeneration of a pediatric alveolar cleft model using three-dimensionally printed bioceramic scaffolds and osteogenic agents: comparison of dipyridamole and rhBMP-2.Plast Reconstr Surg2019;144:358-70 PMCID:PMC6668366

[141]

Lee JS,Ryu JY.Osteogenesis of 3D-printed PCL/TCP/bdECM scaffold using adipose-derived stem cells aggregates; an experimental study in the canine mandible.Int J Mol Sci2021;22:5409 PMCID:PMC8196585

[142]

Remy MT,He L.Rat calvarial bone regeneration by 3D-printed β-tricalcium phosphate incorporating microRNA-200c.ACS Biomater Sci Eng2021;7:4521-34 PMCID:PMC8441974

[143]

Karyagina A,Poponova M.Hybrid implants based on calcium-magnesium silicate ceramics diopside as a carrier of recombinant BMP-2 and demineralized bone matrix as a scaffold: dynamics of reparative osteogenesis in a mouse craniotomy model.Biochemistry2022;87:1277-91

[144]

Pal P,Fan LW.Functionalized collagen/elastin-like polypeptide hydrogels for craniofacial bone regeneration.Adv Healthc Mater2023;12:e2202477

[145]

Sheikh Z,Daood U.Three-dimensional printing methods for bioceramic-based scaffold fabrication for craniomaxillofacial bone tissue engineering.J Funct Biomater2024;15:60 PMCID:PMC10970952

[146]

Yamamuro T.Bioceramics. In: Poitout DG, Editor. Biomechanics and biomaterials in orthopedics. London: Springer London; 2004. pp. 22-33.

[147]

Lowe B,Walsh LJ.Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering.ACS Omega2020;5:1-9 PMCID:PMC6963893

[148]

Sulaiman SB,Cheng CH,Idrus RBH.Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone.Indian J Med Res2013;137:1093-101 PMCID:PMC3734714

[149]

Lin K,Romanazzo S.3D printing of bioceramic scaffolds-barriers to the clinical translation: from promise to reality, and future perspectives.Materials2019;12:2660 PMCID:PMC6747602

[150]

Roberts TT.Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing.Organogenesis2012;8:114-24 PMCID:PMC3562252

[151]

Elshazly N,Hamdy A,Elshazly M.Advances in clinical applications of bioceramics in the new regenerative medicine era.World J Clin Cases2024;12:1863-9 PMCID:PMC11036528

[152]

Prabha RD,Harkness L.Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.J Tissue Eng Regen Med2018;12:e1537-48

[153]

Tavakoli M,Emadi R.3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction.Int J Biol Macromol2024;258:128917

[154]

Zhang Y,Jiang X.Stepwise degradable PGA-SF core-shell electrospinning scaffold with superior tenacity in wetting regime for promoting bone regeneration.Mater Today Bio2024;26:101023 PMCID:PMC10959703

[155]

Zheng W,Hong J.Incorporation of small extracellular vesicles in PEG/HA-Bio-Oss hydrogel composite scaffold for bone regeneration.Biomed Mater2024;19:065014

[156]

Farjaminejad S,Hasani M.Advances and challenges in polymer-based scaffolds for bone tissue engineering: a path towards personalized regenerative medicine.Polymers2024;16:3303 PMCID:PMC11644794

[157]

Karp JM,Davies JE.Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro.J Biomed Mater Res A2003;64:388-96

[158]

Yao Q,Xu T.Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.Biomaterials2017;115:115-27 PMCID:PMC5181114

[159]

Martina M.Biodegradable polymers applied in tissue engineering research: a review.Polym Int2007;56:145-57

[160]

Teoh SH,Lim J.Three-dimensional printed polycaprolactone scaffolds for bone regeneration success and future perspective.Tissue Eng Part A2019;25:931-5

[161]

Yang M,Nga VD,Yeo TT.Cranial reconstruction using a polycaprolactone implant after burr hole trephination.J 3D Print Med2020;4:9-16

[162]

Teo L,Liu Y.A novel bioresorbable implant for repair of orbital floor fractures.Orbit2015;34:192-200

[163]

Park H,Jeong WS.Clinical application of three-dimensional printing of polycaprolactone/beta-tricalcium phosphate implants for cranial reconstruction.J Craniofac Surg2022;33:1394-9 PMCID:PMC9275841

[164]

Kim DH,Shim JH.Clinical application of 3-dimensional printing technology for patients with nasal septal deformities: a multicenter study.JAMA Otolaryngol Head Neck Surg2018;144:1145-52 PMCID:PMC6583092

[165]

Schuckert KH,Teoh SH.Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case.Tissue Eng Part A2009;15:493-9

[166]

Kirmanidou Y,Michalakis K.Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: a review of their craniofacial applications.Biomater Adv2024;162:213902

[167]

Liu H,Webster TJ.Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition.Int J Nanomedicine2006;1:541-5 PMCID:PMC2676635

[168]

Song X,Wang F.Bioinspired protein/peptide loaded 3D printed PLGA scaffold promotes bone regeneration.Front Bioeng Biotechnol2022;10:832727 PMCID:PMC9300829

[169]

Kazemi N,Koupaei N,Masaeli E.Highly porous sildenafil loaded polylactic acid/polyvinylpyrrolidone based 3D printed scaffold containing forsterite nanoparticles for craniofacial reconstruction.Int J Biol Macromol2024;282:137255

[170]

Nosrat A,Khatibi AH.Clinical, radiographic, and histologic outcome of regenerative endodontic treatment in human teeth using a novel collagen-hydroxyapatite scaffold.J Endod2019;45:136-43

[171]

Jiang Y,Yang B.3D bioprinted GelMA/GO composite induces osteoblastic differentiation.J Biomater Appl2022;37:527-37

[172]

Rodríguez-Méndez I,Rodríguez-Navarrete A.Bioactive Sr(II)/chitosan/poly(ε-caprolactone) scaffolds for craniofacial tissue regeneration. In vitro and in vivo behavior.Polymers2018;10:279 PMCID:PMC6415099

[173]

Mao Z,Yu C.Mechanically robust and personalized silk fibroin-magnesium composite scaffolds with water-responsive shape-memory for irregular bone regeneration.Nat Commun2024;15:4160 PMCID:PMC11099135

[174]

Guo L,Yang L.The role of natural polymers in bone tissue engineering.J Control Release2021;338:571-82

[175]

Thrivikraman G,Gordon R.Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization.Nat Commun2019;10:3520 PMCID:PMC6684598

[176]

Zhang H,Yang XG.Demineralized bone matrix carriers and their clinical applications: an overview.Orthop Surg2019;11:725-37 PMCID:PMC6819172

[177]

Gruskin E,Futrell FW,Hollinger JO.Demineralized bone matrix in bone repair: history and use.Adv Drug Deliv Re2012;64:1063-77 PMCID:PMC7103314

[178]

Wang Y,Walsh A.In vivo degradation of three-dimensional silk fibroin scaffolds.Biomaterials2008;29:3415-28 PMCID:PMC3206261

[179]

Lueckgen A,Ellinghaus A,Duda GN.Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration.Biomaterials2019;217:119294

[180]

Filippi M,Chaaban M.Natural polymeric scaffolds in bone regeneration.Front Bioeng Biotechnol2020;8:474 PMCID:PMC7253672

[181]

Charnley J.Anchorage of the femoral head prosthesis to the shaft of the femur.J Bone Joint Surg Br1960;42-B:28-30

[182]

Rosinski CL,Geever B.A retrospective comparative analysis of titanium mesh and custom implants for cranioplasty.Neurosurgery2020;86:E15-22

[183]

Jeng MD.Autogenous bone grafts and titanium mesh-guided alveolar ridge augmentation for dental implantation.J Dent Sci2020;15:243-8 PMCID:PMC7486499

[184]

Zhao Z,Li M,Ding G.Three-dimensional printed titanium mesh combined with iliac cancellous bone in the reconstruction of mandibular defects secondary to ameloblastoma resection.BMC Oral Health2023;23:681 PMCID:PMC10510271

[185]

Elias CN,Valiev R.Biomedical applications of titanium and its alloys.JOM2008;60:46-9

[186]

Oliver JD,Abu-Ghname A,Sharaf B.Alloplastic cranioplasty reconstruction: a systematic review comparing outcomes with titanium mesh, polymethyl methacrylate, polyether ether ketone, and norian implants in 3591 adult patients.Ann Plast Surg2019;82:S289-94

[187]

Glenske K,Köwitsch A.Applications of metals for bone regeneration.Int J Mol Sci2018;19:826 PMCID:PMC5877687

[188]

Yu XY,Chen W,Zhang SM.Osteoclast-mediated biocorrosion of pure titanium in an inflammatory microenvironment.Mater Sci Eng C Mater Biol Appl2021;119:111610

[189]

Leonhardt H,McLeod NMH,Nowak A.Fixation of fractures of the condylar head of the mandible with a new magnesium-alloy biodegradable cannulated headless bone screw.Br J Oral Maxillofac Surg2017;55:623-5

[190]

Leonhardt H,Lauer G.Osteosynthesis of the mandibular condyle with magnesium-based biodegradable headless compression screws show good clinical results during a 1-year follow-up period.J Oral Maxillofac Surg2021;79:637-43

[191]

Luhr HG.Indications for use of a microsystem for internal fixation in craniofacial surgery.J Craniofac Surg1990;1:35-52

[192]

Deshoju AK,Reddy AA,Nagarajan S.Efficacy of a novel Zn-substituted monetite-based scaffold in the treatment of periodontal osseous defects.J Int Acad Periodontol2017;19:2-9

[193]

Asri RIM,Samykano M.Corrosion and surface modification on biocompatible metals: a review.Mater Sci Eng C Mater Biol Appl2017;77:1261-74

[194]

Fan L,Yang M,Liu J.Metallic materials for bone repair.Adv Healthc Mater2024;13:e2302132

[195]

Zhang C,Liu N.Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects.Front Bioeng Biotechnol2023;11:1258030 PMCID:PMC10475942

[196]

Yang J,Gao H.Additive manufacturing of trabecular tantalum scaffolds by laser powder bed fusion: mechanical property evaluation and porous structure characterization.Mater Charact2020;170:110694

[197]

Luo C,Wu X.Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology.Mater Sci Eng C Mater Biol Appl2021;129:112382

[198]

Muresan LM.Nanocomposite coatings for anti-corrosion properties of metallic substrates.Materials2023;16:5092 PMCID:PMC10384308

[199]

An HW,Park JW.Surface characteristics and in vitro biocompatibility of surface-modified titanium foils as a regenerative barrier membrane for guided bone regeneration.J Biomater Appl2023;37:1228-42

[200]

Ali M,Chang ASN.Osteoimmune-modulating and BMP-2-eluting anodised 3D printed titanium for accelerated bone regeneration.J Mater Chem B2023;12:97-111

[201]

Martín-Del-Campo M,Rojo L.Biomaterials for cleft lip and palate regeneration.Int J Mol Sci2019;20:2176 PMCID:PMC6540257

[202]

Kazimierczak P.Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: a concise review.Coatings2020;10:971

[203]

Prasopthum A,Shakesheff KM.Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells.ACS Appl Mater Interfaces2019;11:18896-906

[204]

Hutmacher DW,Dalton PD.Chapter 11 - scaffold design and fabrication. In: De Boer J, Blitterswijk CAV, Uquillas JA, Malik N, Editors. Tissue engineering (Third Edition). Academic Press; 2023. pp. 355-85.

[205]

Harikrishnan P,Sivasamy A.Biocompatibility studies of nanoengineered polycaprolactone and nanohydroxyapatite scaffold for craniomaxillofacial bone regeneration.J Craniofac Surg2019;30:265-9

[206]

Wang C,Chen Y.[Electrospun PLGA scaffold loaded with osteogenic growth peptide accelerates cranial bone repair in rats].Nan Fang Yi Ke Da Xue Xue Bao2021;41:1183-90. (in Chinese) PMCID:PMC8527238

[207]

Lim DJ.Bone mineralization in electrospun-based bone tissue engineering.Polymers2022;14:2123 PMCID:PMC9146582

[208]

Fu N,Jiao T.P34HB electrospun fibres promote bone regeneration in vivo.Cell Prolif2019;52:e12601 PMCID:PMC6536444

[209]

Guler Z,Sezai Sarac A.RGD functionalized poly( ε -caprolactone)/poly(m-anthranilic acid) electrospun nanofibers as high-performing scaffolds for bone tissue engineering RGD functionalized PCL/P3ANA nanofibers.Int J Polym Mater Polym Biomater2017;66:139-48

[210]

Maji S.Engineering hydrogels for the development of three-dimensional in vitro models.Int J Mol Sci2022;23:2662 PMCID:PMC8910155

[211]

Yang F,Wang DA,Manson PN.The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells.Biomaterials2005;26:5991-8

[212]

Kumar VB,Finkelstein-Zuta G,Gazit E.Design of functional RGD peptide-based biomaterials for tissue engineering.Pharmaceutics2023;15:345 PMCID:PMC9967156

[213]

Lee DK,Kim EH.Biosilicated collagen/β-tricalcium phosphate composites as a BMP-2-delivering bone-graft substitute for accelerated craniofacial bone regeneration.Biomater Res2021;25:13 PMCID:PMC8059180

[214]

Deepika M,Pavan B,R AD.Evaluation of PRF and PLA-PGA membrane along with hydroxyapatite crystal collagen fibers bone graft in the treatment of infrabony defects.J Contemp Dent Pract2023;24:442-8

[215]

Wang X,Ji L,Wang J.Calcium phosphate-based materials regulate osteoclast-mediated osseointegration.Bioact Mater2021;6:4517-30 PMCID:PMC8484898

[216]

Wu T,Liang Y,Lin Z.Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate.Mater Sci Eng C Mater Biol Appl2020;109:110481

[217]

Wang Z,Yu X.Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold.Int J Biol Macromol2024;277:134185

[218]

Kim M,Li Y.Personalized composite scaffolds for accelerated cell- and growth factor-free craniofacial bone regeneration.Bioact Mater2024;41:427-39 PMCID:PMC11345904

[219]

Wang B,Chen X.Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2.Int J Nanomedicine2018;13:7395-408 PMCID:PMC6237249

[220]

Chen G,Lv Y.Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.J Biomed Mater Res A2016;104:833-41

[221]

Tang Z,Tan Y,Zhang X.The material and biological characteristics of osteoinductive calcium phosphate ceramics.Regen Biomater2018;5:43-59 PMCID:PMC5798025

[222]

Vargas D,Whitehead E.Synthesis and osteoinductive properties of nanosized lithium-modified calcium-organic frameworks.Materials2025;18:2091 PMCID:PMC12072901

[223]

Phadke A,Varghese S.Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells.Macromol Biosci2012;12:1022-32

[224]

Ku JK,Ghim MS.Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel.Biomed Mater2021;16:055004

[225]

Babaei M,Mirzadeh M.A comprehensive bench-to-bed look into the application of gamma-sterilized 3D-printed polycaprolactone/hydroxyapatite implants for craniomaxillofacial defects, an in vitro, in vivo, and clinical study.Biomater Adv2024;161:213900

[226]

Banche-Niclot F,Montalbano G,Mattioli-Belmonte M.3D printed scaffold based on type i collagen/PLGA_TGF-β1 nanoparticles mimicking the growth factor footprint of human bone tissue.Polymers2022;14:857 PMCID:PMC8912467

[227]

Hutchings G,Dompe C.Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials.J Clin Med2020;9:139 PMCID:PMC7019836

[228]

Dai Y,Zhang Y.Neoteric semiembedded β-tricalcium phosphate promotes osteogenic differentiation of mesenchymal stem cells under cyclic stretch.ACS Appl Mater Interfaces2024;16:8289-300

[229]

Yu L,Wang H.Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning.Acta Biomater2020;112:75-86

[230]

Wu P,Liu HF.The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine.Mil Med Res2023;10:35 PMCID:PMC10388535

[231]

Liu H,Zhu Y.Bioinspired piezoelectric periosteum to augment bone regeneration via synergistic immunomodulation and osteogenesis.ACS Appl Mater Interfaces2023;15:12273-93

[232]

Cui X,Shan Y.Piezocatalytically-induced controllable mineralization scaffold with bone-like microenvironment to achieve endogenous bone regeneration.Sci Bull2024;69:1895-908

[233]

Tang Y,Wu Z,Zhang W.Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration.Sci Rep2017;7:43360 PMCID:PMC5327417

[234]

Meneghetti DH,de Andrade Pinto SA.Electrical stimulation therapy and rotary jet-spinning scaffold to treat bone defects.Anat Rec2023;306:79-91

[235]

Wu H,Tang Z.Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation.Biomaterials2023;293:121990

[236]

Collignon AM,Gomez E.Mouse Wnt1-CRE-RosaTomato dental pulp stem cells directly contribute to the calvarial bone regeneration process.Stem Cells2019;37:701-11

[237]

Augustine R,Nikolopoulos VK,Bostanci NS.Stem cells in bone tissue engineering: progress, promises and challenges.Stem Cell Rev Rep2024;20:1692-731

[238]

Antoni D,Josset E.Three-dimensional cell culture: a breakthrough in vivo.Int J Mol Sci2015;16:5517-27 PMCID:PMC4394490

[239]

Luo Y.Chapter 19 - three-dimensional scaffolds. In: Lanza R, Langer R, Vacanti JP, Atala A, Editors. Principles of tissue engineering (Fifth Edition). Academic Press; 2020. pp. 343-60.

[240]

Yun C,Kim KM.Advantages of using 3D spheroid culture systems in toxicological and pharmacological assessment for osteogenesis research.Int J Mol Sci2024;25:2512 PMCID:PMC10931738

[241]

Kato H,Saito A,Azuma T.Bone regeneration of induced pluripotent stem cells derived from peripheral blood cells in collagen sponge scaffolds.J Appl Oral Sci2022;30:e20210491 PMCID:PMC8860406

[242]

Jeon OH,Lu Q,Feldman RA.Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials.Sci Rep2016;6:26761 PMCID:PMC4881234

[243]

Gao X,Layne JE,Huard J.Stem cells and bone tissue engineering.Life2024;14:287 PMCID:PMC10971350

[244]

Ren X,Foulad D.Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds.Sci Adv2019;5:eaaw4991 PMCID:PMC6561746

[245]

Ren X,Foulad D.Nanoparticulate mineralized collagen glycosaminoglycan materials directly and indirectly inhibit osteoclastogenesis and osteoclast activation.J Tissue Eng Regen Med2019;13:823-34 PMCID:PMC6529242

[246]

Qin C,Chen L.Cell-laden scaffolds for vascular-innervated bone regeneration.Adv Healthc Mater2023;12:e2201923

[247]

Chamieh F,Coyac BR.Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells.Sci Rep2016;6:38814 PMCID:PMC5146967

[248]

Zhang B,Wang ZL,Wu H.Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.J Zhejiang Univ Sci B2017;18:963-76 PMCID:PMC5696315

[249]

Chen J,Yang J,Qin H.Vascularization reconstruction strategies in craniofacial bone regeneration.Coatings2024;14:357

[250]

Amini AR,Laurencin CT.Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.Tissue Eng Part A2012;18:1376-88 PMCID:PMC5802344

[251]

Subbiah R,Parthiban SP.Prevascularized hydrogels with mature vascular networks promote the regeneration of critical-size calvarial bone defects in vivo.J Tissue Eng Regen Med2021;15:219-31

[252]

Hilkens P,Ratajczak J,Wolfs E.The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration.Stem Cells Int2017;2017:2582080 PMCID:PMC5605798

[253]

Liu X,Lin Q,Liu G.Exosome-loaded hydrogels for craniofacial bone tissue regeneration.Biomed Mater2024;19:052002

[254]

Liu Y,Yu S.Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization.Stem Cell Res Ther2021;12:76 PMCID:PMC7821694

[255]

García-García A.extracellular matrices to modulate the innate immune response and enhance bone healing.Front Immunol2019;10:2256 PMCID:PMC6764079

[256]

Su N,Barati D,Luo Y.Stem cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model.Adv Mater2023;35:e2208781 PMCID:PMC10057912

[257]

Baht GS,Alman BA.The role of the immune cells in fracture healing.Curr Osteoporos Rep2018;16:138-45 PMCID:PMC5866272

[258]

Schmidt-Bleek K,Schulz N.Inflammatory phase of bone healing initiates the regenerative healing cascade.Cell Tissue Res2012;347:567-73

[259]

Jin SS,Luo D.A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration.ACS Nano2019;13:6581-95

[260]

Chen D,Su Z.Selenium-doped mesoporous bioactive glass regulates macrophage metabolism and polarization by scavenging ROS and promotes bone regeneration in vivo.ACS Appl Mater Interfaces2023;15:34378-96

[261]

Yang SY,Yu XG.A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration.J Nanobiotechnology2024;22:59 PMCID:PMC10863132

[262]

Liu X,Luo J.Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration.Biomaterials2021;276:121037

[263]

Li D,Zhang J,Tian A.The immunomodulatory effect of IL-4 accelerates bone substitute material-mediated osteogenesis in aged rats via NLRP3 inflammasome inhibition.Front Immunol2023;14:1121549 PMCID:PMC10157059

[264]

Shen H,Zhi Y.Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization.Mater Sci Eng C Mater Biol Appl2021;118:111471

[265]

Patel DK,Hexiu J,Lim KT.3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization.Carbohydr Polym2022;281:119077

[266]

Jiang X,Zhang Y.Dual-mode release of IL-4 and TCP from a PGA-SF core-shell electrospinning scaffold for enhanced bone regeneration through synergistic immunoregulation and osteogenesis.ACS Appl Mater Interfaces2024;16:58148-67

[267]

Wang Y,Gao R.Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation.Biomaterials2022;285:121538

[268]

Schlundt C,Serra A.Macrophages in bone fracture healing: their essential role in endochondral ossification.Bone2018;106:78-89

[269]

Wang H,Huang T,Xiang L.Hippo-YAP/TAZ signaling in osteogenesis and macrophage polarization: therapeutic implications in bone defect repair.Genes Dis2023;10:2528-39 PMCID:PMC10404961

[270]

Kang HW,Ko IK,Yoo JJ.A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.Nat Biotechnol2016;34:312-9

[271]

Jin J,Qian H.Precision pore structure optimization of additive manufacturing porous tantalum scaffolds for bone regeneration: a proof-of-concept study.Biomaterials2025;313:122756

[272]

Kim NH,On SW.Customized three-dimensional printed ceramic bone grafts for osseous defects: a prospective randomized study.Sci Rep2024;14:3397 PMCID:PMC10858220

[273]

Suh H,Lee J,Lee YM.Comparative evaluation of 3D-printed and conventional implants in vivo: a quantitative microcomputed tomographic and histomorphometric analysis.Sci Rep2023;13:21041 PMCID:PMC10687100

[274]

Maken P,Gupta A.Challenges for 3D imaging for craniofacial applications. In: Rana SS, Chaudhari PK, Gupta A, Editors. Applications of three-dimensional imaging for craniofacial region. Singapore: Springer Nature Singapore; 2024. pp. 223-40.

[275]

Miranda F,Barone S.Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate.Sci Rep2023;13:15861 PMCID:PMC10516946

[276]

Orhan K,Ezhov M.AI-based automatic segmentation of craniomaxillofacial anatomy from CBCT scans for automatic detection of pharyngeal airway evaluations in OSA patients.Sci Rep2022;12:11863 PMCID:PMC9279304

[277]

Kim WJ,Kim JW.Bone-targeted lipoplex-loaded three-dimensional bioprinting bilayer scaffold enhanced bone regeneration.Regen Biomater2024;11:rbae055 PMCID:PMC11167398

[278]

Shao H,Zhang T.Modular scaffolds with intelligent visual guidance system for in situ bone tissue repair.Int J Extrem Manuf2025;7:025503

[279]

Subbiah R,Tahayeri A.3D printing of microgel-loaded modular microcages as instructive scaffolds for tissue engineering.Adv Mater2020;32:e2001736

[280]

da Costa Sousa MG,Subbiah R.In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale.Biomater Adv2024;159:213805 PMCID:PMC10997158

[281]

Franca CM,Subbiah R.High-throughput bioprinting of geometrically-controlled pre-vascularized injectable microgels for accelerated tissue regeneration.Adv Healthc Mater2023;12:e2202840

[282]

Kim M,Huh JE.Tetraspanin 7 regulates osteoclast function through association with the RANK/αvβ3 integrin complex.J Cell Physiol2022;237:846-55

[283]

Pan S,Shi C.Multifunctional injectable hydrogel microparticles loaded with miR-29a abundant BMSCs derived exosomes enhanced bone regeneration by regulating osteogenesis and angiogenesis.Small2024;20:e2306721

[284]

Wang W,Liu Y.3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration.Tissue Cell2024;88:102418

[285]

Iglesias-Mejuto A.3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering.Mater Sci Eng C Mater Biol Appl2021;131:112525

[286]

Xu H,Chen J,Yu X.BMP-2 releasing mineral-coated microparticle-integrated hydrogel system for enhanced bone regeneration.Front Bioeng Biotechnol2023;11:1217335 PMCID:PMC10447977

[287]

Barik D,Das K,Dash M.Glycoprotein injectable hydrogels promote accelerated bone regeneration through angiogenesis and innervation.Adv Healthc Mater2023;12:e2301959

[288]

Subbiah R,Athirasala A.Engineering of an osteoinductive and growth factor-free injectable bone-like microgel for bone regeneration.Adv Healthc Mater2023;12:e2200976

[289]

Guerrero J,Ghayor C,Weber FE.Influence of scaffold microarchitecture on angiogenesis and regulation of cell differentiation during the early phase of bone healing: a transcriptomics and histological analysis.Int J Mol Sci2023;24:6000 PMCID:PMC10056849

[290]

Liu Y,Cao L,Wang J.Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds.Mater Sci Eng C Mater Biol Appl2020;110:110622

[291]

Chen H,Huang J.Fabrication of 3D bioprinted Bi-phasic scaffold for bone-cartilage interface regeneration.Biomimetics2023;8:87 PMCID:PMC10046269

[292]

Bedell ML,Hogan KJ.The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs.Acta Biomater2023;155:99-112 PMCID:PMC9805529

[293]

Liu Y,Li L.3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model.Biomaterials2021;279:121216

[294]

Schmidt-Bleek K,Duda G.Future treatment strategies for delayed bone healing: an osteoimmunologic approach.J Am Acad Orthop Surg2016;24:e134-5 PMCID:PMC5146983

[295]

Qin L,Zhao C.Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections.Bone Res2024;12:28 PMCID:PMC11094017

[296]

Jiang C,Liu Q.Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis.Front Bioeng Biotechnol2024;12:1375266 PMCID:PMC11004352

[297]

Kushioka J,Toya M.Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy.Inflamm Regen2023;43:29 PMCID:PMC10210469

[298]

Zushin PH,Wu JC.FDA modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches.J Clin Invest2023;133:e175824 PMCID:PMC10617761

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/