A comprehensive review of the educational, clinical and rehabilitative applications of 3D printing technology in hand surgery
Omar Allam , Alexander Kammien , Riley Baker , Patrick Adamczyk , Adnan Prsic
Plastic and Aesthetic Research ›› 2024, Vol. 11 ›› Issue (1) : 44
A comprehensive review of the educational, clinical and rehabilitative applications of 3D printing technology in hand surgery
With the rapid development of 3D printing (3DP) technology in both educational and perioperative settings, a thorough evaluation of the latest literature is warranted. This semi-systematic review explores the current educational, clinical, and rehabilitative applications of 3DP technology in hand surgery. In educational settings, student and trainee education improved with the use of inexpensive, accessible models for anatomy and surgical simulation, demonstrating an enhanced understanding of spatial relationships and increased confidence in surgical skills. Patient education and consent can be improved with the use of patient-specific models. Studies showed that patient-specific models led to higher patient comprehension and satisfaction during the consenting process. Patient-specific models also offer more comprehensive preoperative planning, and cutting guides facilitate more precise surgical techniques. Clinical outcomes indicated reduced operative times and radiation exposure, along with improved surgical accuracy. Additionally, 3DP enables the creation of cost-effective implants that precisely conform to each patient's anatomy. For rehabilitative purposes, 3DP can make splints that have the potential to reduce costs and improve compliance. Preliminary data indicated higher patient comfort and improved functional outcomes with 3D-printed splints. Overall, the current literature is mixed on the benefits of 3DP in hand surgery; however, many studies show promising results. As 3DP becomes more streamlined and the equipment becomes less expensive, its applications will continue to expand, and future research will be needed. Future studies should focus on long-term clinical outcomes and cost-effectiveness to fully ascertain the efficacy and value of 3DP in hand surgery.
Hand surgery / 3D printing / surgical education / patient education / preoperative planning / intraoperative guides / implants / bioprinting
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Campe A, Nagy L, Arbab D, Dumont CE. Corrective osteotomies in malunions of the distal radius: do we get what we planned?.Clin Orthop Relat Res2006;450:179-85 |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
U.S. Food and Drug Administration. Discussion paper: 3D printing medical devices at the point of care. US FDA. 2021. Available from: https://www.fda.gov/media/154729/download. [Last accessed on 29 Aug 2024] |
| [115] |
U.S. Food and Drug Administration. Technical considerations for additive manufactured medical devices: guidance for industry and food and drug administration staff. 2017. Available from: https://www.fda.gov/media/97633/download. [Last accessed on 29 Aug 2024] |
| [116] |
Guidance for industry. Metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products. Chemistry, manufacturing, and controls documentation. 1998. Available from: https://app.gxp-services.net/guidemgr/files/1-7-6.pdf. [Last accessed on 29 Aug 2024] |
/
| 〈 |
|
〉 |