Regenerative peripheral nerve interfaces (RPNIs): an overview of innovative surgical approaches

Ipek Berberoglu , Katherine L. Burke , Paul S. Cederna , Stephen W.P Kemp

Plastic and Aesthetic Research ›› 2024, Vol. 11 ›› Issue (1) : 14

PDF
Plastic and Aesthetic Research ›› 2024, Vol. 11 ›› Issue (1) :14 DOI: 10.20517/2347-9264.2023.101
Review

Regenerative peripheral nerve interfaces (RPNIs): an overview of innovative surgical approaches

Author information +
History +
PDF

Abstract

Complications following amputation can be devastating for patients, including debilitating neuropathic pain, the inability to perform activities of daily living (ADLs) or gain meaningful employment. While prosthesis use allows patients to restore independence and reintegrate into daily activities, patients often abandon these devices. Despite the immense advancements in prosthetic technology, there is still a need for an interface that can provide a natural experience with accurate and reliable long-term control. The Regenerative Peripheral Nerve Interface (RPNI) is a simple surgical technique that offers real-time control of myoelectric prosthetic devices to restore extremity function. This stable, biological nerve interface successfully amplifies efferent motor action potentials, provides sensory feedback, and offers a more functional prosthetic device experience. Based on the principles of RPNI, novel surgical approaches have been developed to expand its applications and improve outcomes. This review article summarizes the utilization of the RPNI and its recent modifications of different neural interfaces in the setting of major limb amputation and musculoskeletal injuries.

Keywords

RPNI / regenerative peripheral nerve interface / targeted muscle reinnervation / amputation / prosthetic control / exoskeleton / postamputation pain / sensory feedback

Cite this article

Download citation ▾
Ipek Berberoglu, Katherine L. Burke, Paul S. Cederna, Stephen W.P Kemp. Regenerative peripheral nerve interfaces (RPNIs): an overview of innovative surgical approaches. Plastic and Aesthetic Research, 2024, 11(1): 14 DOI:10.20517/2347-9264.2023.101

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ziegler-Graham K,Ephraim PL,Brookmeyer R.Estimating the prevalence of limb loss in the United States: 2005 to 2050.Arch Phys Med Rehabil2008;89:422-9

[2]

Ma VY,Carruthers KJ.Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain.Arch Phys Med Rehabil2014;95:986-95.e195.e1 PMCID:PMC4180670

[3]

Richards JT,Tintle SM,Renninger CH.Peripheral nerve management in extremity amputations.Orthop Clin North Am2022;53:155-66

[4]

Davis G.Management of pain in complex nerve injuries.Hand Clin2016;32:257-62

[5]

Cowley J,Wilken J,Gates D.Movement quality of conventional prostheses and the DEKA Arm during everyday tasks.Prosthet Orthot Int2017;41:33-40 PMCID:PMC5511738

[6]

Salminger S,Pichler LH.Current rates of prosthetic usage in upper-limb amputees - have innovations had an impact on device acceptance?.Disabil Rehabil2022;44:3708-13

[7]

Biddiss EA.Upper limb prosthesis use and abandonment: a survey of the last 25 years.Prosthet Orthot Int2007;31:236-57

[8]

Burke KL,Hooper RC,Cederna PS.Regenerative peripheral nerve interfaces (RPNIs): current status and future direction.Plast Aesthet Res2022;9:48.

[9]

Sando IC,Nedic A.Dermal sensory regenerative peripheral nerve interface for reestablishing sensory nerve feedback in peripheral afferents in the rat.Plast Reconstr Surg2023;151:804e-13e

[10]

Hsu E.Postamputation pain: epidemiology, mechanisms, and treatment.J Pain Res2013;6:121-36 PMCID:PMC3576040

[11]

Mapplebeck JC,Salter MW.Molecules in pain and sex: a developing story.Mol Brain2017;10:9 PMCID:PMC5341415

[12]

Liu Y.Nonsurgical approaches to neuroma management.Hand Clin2021;37:323-33

[13]

Starr BW.Traditional neuroma management.Hand Clin2021;37:335-44

[14]

Faust AE,Cwalina NA.Development of an acellular nerve cap xenograft for neuroma prevention.J Biomed Mater Res A2022;110:1738-48

[15]

Hu Y,Sohasky RA.Regenerative peripheral nerve interface free muscle graft mass and function.Muscle Nerve2021;63:421-9

[16]

Ganesh Kumar N.Regenerative peripheral nerve interfaces for the treatment and prevention of neuromas and neuroma pain.Hand Clin2021;37:361-71

[17]

Kung TA,Martin DC,Cederna PS.Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode.Plast Reconstr Surg2014;133:1380-94

[18]

Kubiak CA,Kung TA,Cederna PS."Decreasing postamputation pain with the regenerative peripheral nerve interface (RPNI)".Ann Vasc Surg2022;79:421-6

[19]

Kubiak CA,Cederna PS.Prophylactic regenerative peripheral nerve interfaces to prevent postamputation pain.Plast Reconstr Surg2019;144:421e-30e

[20]

Kubiak CA,Cederna PS.Regenerative peripheral nerve interface for management of postamputation neuroma.JAMA Surg2018;153:681-2

[21]

Ganesh Kumar N,Cederna PS.Regenerative peripheral nerve interfaces for advanced control of upper extremity prosthetic devices.Hand Clin2021;37:425-33

[22]

Vu PP,Irwin ZT.A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees.Sci Transl Med2020;12:eaay2857. PMCID:PMC8082695

[23]

Vu PP,Bullard AJ.Closed-loop continuous hand control via chronic recording of regenerative peripheral nerve interfaces.IEEE Trans Neural Syst Rehabil Eng2018;26:515-26

[24]

Vu PP,Lee C.Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces and implanted EMG electrodes.J Neural Eng2023;20:026039 PMCID:PMC10126717

[25]

Woo SL,Brown DL,Kelly BM.Regenerative peripheral nerve interfaces for the treatment of postamputation neuroma pain: a pilot study.Plast Reconstr Surg Glob Open2016;4:e1038. PMCID:PMC5222635

[26]

Sensinger JW.A review of sensory feedback in upper-limb prostheses from the perspective of human motor control.Front Neurosci2020;14:345 PMCID:PMC7324654

[27]

Raspopovic S,Petrini FM.Sensory feedback for limb prostheses in amputees.Nat Mater2021;20:925-39

[28]

Hart SE.Dermatosensory peripheral nerve interfaces: prevention of pain recurrence following sensory neurectomy.Hand Clin2021;37:383-9

[29]

Raspopovic S,Petrini FM.Restoring natural sensory feedback in real-time bidirectional hand prostheses.Sci Transl Med2014;6:222ra19

[30]

Svientek SR,Cederna PS.Fabrication of the composite regenerative peripheral nerve interface (C-RPNI) in the adult rat.J Vis Exp2020;156:10.3791/60841 PMCID:PMC7413224

[31]

Bolívar S.Preferential regeneration and collateral dynamics of motor and sensory neurons after nerve injury in mice.Exp Neurol2022;358:114227.

[32]

Svientek SR,Dehdashtian A,Cederna PS.The muscle cuff regenerative peripheral nerve interface for the amplification of intact peripheral nerve signals.J Vis Exp2022;Online ahead of print:

[33]

Kubiak CA,Dehdashtian A.Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves.J Neural Eng2021;18:0460d5

[34]

Siviy C,Quinlivan BT.Opportunities and challenges in the development of exoskeletons for locomotor assistance.Nat Biomed Eng2023;7:456-72.

[35]

Tariq M,Simic M.EEG-based BCI control schemes for lower-limb assistive-robots.Front Hum Neurosci2018;12:312 PMCID:PMC6088276

[36]

Reeves J,Nester C.EMG gait data from indwelling electrodes is attenuated over time and changes independent of any experimental effect.J Electromyogr Kinesiol2020;54:102461

[37]

Huang J,Xu W,Amirat Y.Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition.IEEE Trans Automat Sci Eng2015;12:1257-70.

[38]

Martinez-Valdes E,Falla D,Farina D.Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles.J Appl Physiol2018;124:1071-9

[39]

Bowen JB,Wee C,Valerio IL.Targeted muscle reinnervation technique in below-knee amputation.Plast Reconstr Surg2019;143:309-12

[40]

Frost CM,Flattery SM.Regenerative peripheral nerve interfaces for real-time, proportional control of a neuroprosthetic hand.J Neuroeng Rehabil2018;15:108. PMCID:PMC6245539

[41]

Shu T,Taylor CR.Mechanoneural interfaces for bionic integration.Nat Rev Bioeng2024;Online ahead of print.

[42]

Cheesborough JE,Kuiken TA.Targeted muscle reinnervation and advanced prosthetic arms.Semin Plast Surg2015;29:62-72 PMCID:PMC4317279

[43]

Toyoda Y,Bauder A,Kovach S.Lower extremity amputation: the emerging role of targeted muscle reinnervation (TMR) and regenerative peripheral nerve interface (RPNI).Plast Aesthet Res2022;9:17

[44]

Mioton LM,Shah N.Targeted muscle reinnervation improves residual limb pain, phantom limb pain, and limb function: a prospective study of 33 major limb amputees.Clin Orthop Relat Res2020;478:2161-7 PMCID:PMC7431223

[45]

Dumanian GA,Mioton LM.Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial.Ann Surg2019;270:238-46

[46]

Van Kouwenberg EA.Adipose tissue-preserved skin grafts for lower extremity defects: recommendations to optimize outcomes.Plast Reconstr Surg Glob Open2020;8:e2584 PMCID:PMC7253277

[47]

Rinker B,Barry NG.The effect of cigarette smoking on functional recovery following peripheral nerve ischemia/reperfusion injury.Microsurgery2011;31:59-65

[48]

Rodriguez-Fontan F,Tuaño K,D' Agostino L.Tobacco use and neurogenesis: a theoretical review of pathophysiological mechanism affecting the outcome of peripheral nerve regeneration.J Orthop2020;22:59-63 PMCID:PMC7138932

[49]

Suresh V,Calotta NA,Tuffaha SH.Use of vascularized, denervated muscle targets for prevention and treatment of upper-extremity neuromas.J Hand Surg Glob Online2023;5:92-6 PMCID:PMC9870797

PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

/