Technological advancements in head and neck free tissue transfer reconstruction
Syed Ahmed Ali , Akina Tamaki , Jason E. Thuener , Shawn Li , Nicole Fowler , Pierre Lavertu , Theodoros N. Teknos , Rod P. Rezaee
Plastic and Aesthetic Research ›› 2021, Vol. 8 ›› Issue (1) : 35
Technological advancements in head and neck free tissue transfer reconstruction
Free tissue transfer (FTT) is a cornerstone of head and neck reconstruction. Although rare, complications of FTT surgery can be devastating, including failed flap harvest, wound breakdown, or flap loss ultimately. Thus, modern microvascular surgeons bolster surgical and clinical expertise with a growing number of technological advances to optimize patient care and outcomes. These technologies can be applied in the preoperative, intraoperative, and postoperative period. Various preoperative imaging modalities can assist in selecting the optimal donor site and advanced perforator planning. Intraoperatively, novel technologies can assist with microvascular anastomoses, operative magnification and visualization, and assess free tissue perfusion. Postoperatively, routine clinical assessment can be augmented by a variety of adjunctive monitoring techniques designed to assess tissue health, arterial inflow and venous drainage. The overall ease and success of performing FTT can be improved by employing novel technologies at every phase of the surgical process. This article will expand upon established and upcoming technological advances and the existing literatures to support their use.
Free tissue transfer / head and neck reconstruction / perforator mapping / technology / microvascular couplers / three-dimensional exoscope / fluorescent angiography / postoperative monitoring
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Martínez J, Torres Pérez A, Gijón Vega M, Nuñez-Villaveiran T. Preoperative vascular planning of free flaps: comparative study of computed tomographic angiography, color doppler ultrasonography, and hand-held doppler.Plast Reconstr Surg2020;146:227-37 |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
/
| 〈 |
|
〉 |