The interaction between hyaluronidase and hyaluronic acid gel fillers - a review of the literature and comparative analysis
Michael K. Paap , Rona Z. Silkiss
Plastic and Aesthetic Research ›› 2020, Vol. 7 ›› Issue (1) : 36
The interaction between hyaluronidase and hyaluronic acid gel fillers - a review of the literature and comparative analysis
Hyaluronic acid (HA) is the most common component of aesthetic fillers. Many formulations exist, each exhibiting properties that are manifestations of individual molecular modifications. The enzyme hyaluronidase degrades hyaluronic acid and can therefore be injected into soft tissue to reduce suboptimally placed HA fillers or to reverse local ischemic complications. The clinically available varieties of hyaluronidase may be derived from crude animal extracts or genetically engineered from recombinant human DNA. Different HA fillers are not uniformly dissolved by a single source hyaluronidase, and hyaluronidase from different sources may have varying efficacy in the degradation of HA. Previous studies of subsets of HA fillers and hyaluronidases have provided limited and often conflicting data regarding these differences, and a more comprehensive scientific study is needed. In this review, the authors describe commonly available formulations of HA and hyaluronidase and review all studies of HA-hyaluronidase interaction available via a PubMed and Google Scholar search from 2005 to present, exploring trends in the data. Factors determined to confer increased resistance to degradation included higher concentration of HA, higher crosslinking density, and status as monophasic versus biphasic. Fillers of the Juvéderm family were generally found to be more resistant to degradation than members of the Restylane family. Results are less consistent for Belotero Balance. No variety of hyaluronidase was consistently superior at dissolving any variety of HA filler. More research is needed to clarify these clinically relevant relationships.
Hyaluronic acid / hyaluronic acid gel / hyaluronidase / dermal fillers / enzymatic degradation / filler complications
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Hylenex [Package insert].2012;San Diego, CAHalozyme Therapeutics, Inc |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Food and Drug Administration. Dermal Fillers Approved by the Center for Devices and Radiological Health. Available from: https://www.fda.gov/medical-devices/cosmetic-devices/dermal-fillers-approved-center-devices-and-radiological-health [Last accessed on 6 Jul 2020] |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
U.S. National Library of Medicine. Study to Evaluate Satisfaction After Treatment with Kysse. Available from: https://clinicaltrials.gov/ct2/show/NCT03967444 [Last accessed on 24 Apr 2020] |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
/
| 〈 |
|
〉 |