RESEARCH ARTICLE

Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition

  • Kelei Bi ,
  • Yueting Zheng ,
  • Feng G"ao ,
  • Jianshu Dong ,
  • Jiangyun Wang ,
  • Yi Wang ,
  • Weimin Gong
Expand
  • Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Received date: 01 Nov 2013

Accepted date: 08 Dec 2013

Published date: 01 Feb 2014

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The arginyl-tRNA synthetase (ArgRS) catalyzes the esterification reaction between L-arginine and its cognate tRNAArg. Previously reported structures of ArgRS shed considerable light on the tRNA recognition mechanism, while the aspect of amino acid binding in ArgRS remains largely unexplored. Here we report the first crystal structure of E. coli ArgRS (eArgRS) complexed with L-arginine, and a series of mutational studies using isothermal titration calorimetry (ITC). Combined with previously reported work on ArgRS, our results elucidated the structural and functional roles of a series of important residues in the active site, which furthered our understanding of this unique enzyme.

Cite this article

Kelei Bi , Yueting Zheng , Feng G"ao , Jianshu Dong , Jiangyun Wang , Yi Wang , Weimin Gong . Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein & Cell, 2014 , 5(2) : 151 -159 . DOI: 10.1007/s13238-013-0012-1

1
AdamsPD, AfoninePV, BunkocziG, ChenVB, DavisIW, EcholsN, HeaddJJ, HungLW, KapralGJ, Grosse-KunstleveRWet al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D66: 213-221

DOI

2
CavarelliJ, DelagoutteB, ErianiG, GangloffJ, MorasD (1998) L-Arginine recognition by yeast arginyl-tRNA synthetase. Embo J17: 5438-5448

DOI

3
DelagoutteB, MorasD, CavarelliJ (2000) tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. Embo J19: 599-5610

DOI

4
DunitzJD (1995) Win some, lose some: enthalpy–entropy compensation in weak intermolecular interactions. Chem Biol2: 709-712

DOI

5
ElrodMJ, SaykallyRJ (1994) Many-body effects in intermolecular forces. Chem Rev94: 1975-1997

DOI

6
EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D60: 2126-2132

DOI

7
HendricksonTL, de Crecy-LagardV, SchimmelP (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem73: 147-176

DOI

8
HumphreyW, DalkeA, SchultenK (1996) VMD: visual molecular dynamics. J Mol Graph Model14: 33-38

DOI

9
KernD, LapointeJ (1980) The catalytic mechanism of glutamyltransfer rna-SYNTHETASE OF Escherichia coli. Evidence for a 2-step aminoacylation pathway, and study of the reactivity of the intermediate complex. Eur J Biochem106: 137-150

DOI

10
KonnoM, SumidaT, UchikawaE, MoriY, YanagisawaT, SekineS, YokoyamaS (2009) Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP). Febs J276: 4763-4779

DOI

11
LaskowskiRA, MacarthurMW, MossDS, ThorntonJM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr26: 283-291

DOI

12
LemieuxRU (1996) How water provides the impetus for molecular recognition in aqueous solution. Acc Chem Res29: 373-380

DOI

13
LiuW, HuangYW, ErianiG, GangloffJ, WangED, WangYL (1999) A single base substitution in the variable pocket of yeast tRNA (Arg) eliminates species-speciflc aminoacylation. Biochim Biophys Acta1473: 356-362

DOI

14
MartinisSA, PlateauP, CavarelliJ, FlorentzC (1999) AminoacyltRNA synthetases: a new image for a classical family. Biochimie81: 683-700

DOI

15
MehlerAH, MitraSK (1967) Activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J Biol Chem242: 5495

16
MitraSK, SmithCJ (1969) Absolute requirement for transfer RNA in activation of arginine by arginyl transfer RNA synthetase of yeast. Biochim Biophys Acta190: 222

DOI

17
OtwinowskiZ, MinorW (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol276: 307-326

DOI

18
PerozzoR, FolkersG, ScapozzaL (2004) Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res24: 1-52

DOI

19
RathVL, SilvianLF, BeijerB, SproatBS, SteitzTA (1998) How glutaminyl-tRNAsynthetase selects glutamine. Structure6: 439-449

DOI

20
ReadRJ (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D57: 1373-1382

DOI

21
ShimadaA, NurekiO, GotoM, TakahashiS, YokoyamaS (2001) Structural and mutational studies of the recognition of the arginine tRNA-speciflc major identity element, A20, by arginyltRNA synthetase. Proc Natl Acad Sci USA98: 13537-13542

DOI

22
SinkeldamRW, GrecoNJ, TorY (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev110: 579-2619

DOI

23
WangL, SchultzPG (2005) Expanding the genetic code. Angew Chem Int Ed44: 34-66

DOI

24
WangKH, SchmiedWH, ChinJW (2012) Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed51: 2288-2297

DOI

25
WoeseCR, OlsenGJ, IbbaM, SollD (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol R64(1): 202-236

DOI

26
YaoYN, ZhangQS, YanXZ, ZhuG, WangED (2003) Substrateinduced conformational changes in Escherichia coli arginyl-tRNA synthetase observed by F-19 NMR spectroscopy. Febs Lett547: 197-200

DOI

27
YaoYN, ZhangQS, YanXZ, ZhuG, WangED (2004) Escherichia coli tRNA(4)(Arg)(UCU) induces a constrained conformation of the crucial Omega-loop of arginyl-tRNA synthetase. Biochem Biophys Res Commun313: 129-134

DOI

28
ZhangQS, WangED, WangYL (1998) The role of tryptophan residues in Escherichia coli arginyl-tRNA synthetase. Biochim Biophys Acta1387: 136-142

DOI

29
ZhouM, WangED, CampbellRL, WangYL, LinSX (1997) Crystallization and preliminary X-ray diffraction analysis of arginyl-tRNA synthetase from Escherichia coli. Protein Sci6: 2636-2638

Outlines

/