RESEARCH ARTICLE

Genetic approach to track neural cell fate decisions using human embryonic stem cells

  • Xuemei Fu , 1,2 ,
  • Zhili Rong 2 ,
  • Shengyun Zhu 1,2 ,
  • Xiaocheng Wang 2 ,
  • Yang Xu 2 ,
  • Blue B. Lake , 2
Expand
  • 1. Shenzhen Children’s Hospital, Shenzhen 518026, China
  • 2. Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0322, USA

Received date: 08 Nov 2013

Accepted date: 15 Nov 2013

Published date: 01 Jan 2014

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, human embryonic stem cells (hESCs) hold great promise in human cell therapy. However, there are limited tools for easily identifying and isolating live hESC-derived cells. To track hESC-derived neural progenitor cells (NPCs), we applied homologous recombination to knock-in the mCherry gene into the Nestin locus of hESCs. This facilitated the genetic labeling of Nestin positive neural progenitor cells with mCherry. Our reporter system enables the visualization of neural induction from hESCs both in vitro (embryoid bodies) and in vivo (teratomas). This system also permits the identification of different neural subpopulations based on the intensity of our fluorescent reporter. In this context, a high level of mCherry expression showed enrichment for neural progenitors, while lower mCherry corresponded with more committed neural states. Combination of mCherry high expression with cell surface antigen staining enabled further enrichment of hESC-derived NPCs. These mCherry+NPCs could be expanded in culture and their differentiation resulted in a down-regulation of mCherry consistent with the loss of Nestin expression. Therefore, we have developed a fluorescent reporter system that can be used to trace neural differentiation events of hESCs.

Cite this article

Xuemei Fu , Zhili Rong , Shengyun Zhu , Xiaocheng Wang , Yang Xu , Blue B. Lake . Genetic approach to track neural cell fate decisions using human embryonic stem cells[J]. Protein & Cell, 2014 , 5(1) : 69 -79 . DOI: 10.1007/s13238-013-0007-y

1
AasT, BorresenAL, GeislerS, Smith-SorensenB, JohnsenH, VarhaugJE, AkslenLA, LonningPE (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med2: 811-814

DOI

2
ChambersSM, FasanoCA, PapapetrouEP, TomishimaM, SadelainM, StuderL (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotech27: 275-280

DOI

3
CowanCA, KlimanskayaI, McMahonJ, AtienzaJ, WitmyerJ, ZuckerJP, WangS, MortonCC, McMahonAP, PowersD (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med350: 1353-1356

DOI

4
FuX, XuY (2011) Self-renewal and scalability of human embryonic stem cells for human therapy. Regen Med6: 327-334

DOI

5
HockemeyerD, WangH, KianiS, LaiCS, GaoQ, CassadyJP, CostGJ, ZhangL, SantiagoY, MillerJC (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol29: 731-734

DOI

6
IsraelMA, YuanSH, BardyC, ReynaSM, MuY, HerreraC, HefferanMP, Van GorpS, NazorKL, BoscoloFS (2012) Probing sporadic and familial Alzheimer's disease using induced pluripotent stem cells. Nature482: 216-220

7
ItsyksonP, IlouzN, TuretskyT, GoldsteinRS, PeraMF, FishbeinI, SegalM, ReubinoffBE (2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin. Mol Cell Neurosci30: 24-36

DOI

8
JoannidesAJ, Fiore-HericheC, BattersbyAA, Athauda-ArachchiP, BouhonIA, WilliamsL, WestmoreK, KempPJ, CompstonA, AllenND (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells25: 731-737

DOI

9
KeyoungHM, RoyNS, BenraissA, LouissaintA Jr, SuzukiA, HashimotoM, RashbaumWK, OkanoH, GoldmanSA(2001) High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat Biotechnol19: 843-850

DOI

10
KimJ-E, O'SullivanML, SanchezCA, HwangM, IsraelMA, BrennandK, DeerinckTJ, GoldsteinLSB, GageFH, EllismanMH (2011) Investigating synapse formation and function using human pluripotent stem cell-derived neurons. Proc Natl Acad Sci USA108: 3005-3010

DOI

11
LakeBB, FinkJ, KlemetsauneL, FuX, JeffersJR, ZambettiGP, XuY (2012) Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing puma. Stem Cells30: 888-897

DOI

12
LeeG, KimH, ElkabetzY, Al ShamyG, PanagiotakosG, BarberiT, TabarV, StuderL (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol25: 1468-1475

DOI

13
LenkaN, LuZJ, SasseP, HeschelerJ, FleischmannBK (2002) Quantitation and functional characterization of neural cells derived from ES cells using nestin enhancer-mediated targeting in vitro. J Cell Sci115: 1471-1485

14
LiuY, HanSS, WuY, TuohyTM, XueH, CaiJ, BackSA, ShermanLS, FischerI, RaoMS (2004) CD44 expression identifies astrocyte-restricted precursor cells. Dev Biol276: 31-46

DOI

15
LuoY, CaiJ, LiuY, XueH, ChrestFJ, WerstoRP, RaoM (2002) Microarray analysis of selected genes in neural stem and progenitor cells. J Neurochem83: 1481-1497

DOI

16
MignoneJL, KukekovV, ChiangAS, SteindlerD, EnikolopovG (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol469: 311-324

DOI

17
MorrisonSJ, WhitePM, ZockC, AndersonDJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell96: 737-749

DOI

18
NoisaP, Urrutikoetxea-UriguenA, LiM, CuiW (2010) Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev6: 438-449

DOI

19
OrdonezMP, RobertsEA, KidwellCU, YuanSH, PlaistedWC, GoldsteinLS (2012) Disruption and therapeutic rescue of autophagy in a human neuronal model of Niemann Pick type C1. Hum Mol Genet21: 2651-2662

DOI

20
PeljtoM, WichterleH (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol21: 43-51

DOI

21
PlacantonakisDG, TomishimaMJ, LafailleF, DesbordesSC, Jia F SocciND, VialeA, LeeH, HarrisonN, TabarV (2009) BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells27: 521-532

DOI

22
ReubinoffBE, ItsyksonP, TuretskyT, PeraMF, ReinhartzE, ItzikA, Ben-HurT (2001) Neural progenitors from human embryonic stem cells. Nat Biotech19: 1134-1140

DOI

23
SawamotoK, YamamotoA, KawaguchiA, YamaguchiM, MoriK, GoldmanSA, OkanoH (2001) Direct isolation of committed neuronal progenitor cells from transgenic mice coexpressing spectrally distinct fluorescent proteins regulated by stage-specific neural promoters. J Neurosci Res65: 220-227

DOI

24
SongH, HollsteinM, XuY (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol9: 573-580

DOI

25
SongH, ChungS-K, XuY (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell6: 80-89

DOI

26
UnternaehrerJJ, DaleyGQ (2011) Induced pluripotent stem cells for modelling human diseases. Philos Trans R Soc Lond B Biol Sci366: 2274-2285

DOI

27
WuH, XuJ, PangZP, GeW, KimKJ, BlanchiB, ChenC, SudhofTC, SunYE (2007) Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci USA104: 13821-13826

DOI

28
YuanSH, MartinJ, EliaJ, FlippinJ, ParambanRI, HefferanMP, VidalJG, MuY, KillianRL, IsraelMA (2011) Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One6: e17540

DOI

29
ZhangSC, WernigM, DuncanID, BrustleO, ThomsonJA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol19: 1129-1133

DOI

Outlines

/