RESEARCH ARTICLE

Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae

Expand
  • 1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 28 Apr 2013

Accepted date: 27 May 2013

Published date: 01 Aug 2013

Abstract

Under natural environments, plants and algae have evolved various photosynthetic acclimation mechanisms in response to the constantly changing light conditions. The state transition and long-term response processes in photosynthetic acclimation involve remodeling and composition alteration of thylakoid membrane. A chloroplast protein kinase named Stt7/STN7 has been found to have pivotal roles in both state transition and longterm response. Here we report the crystal structures of the kinase domain of a putative Stt7/STN7 homolog from Micromonas sp. RCC299 (MsStt7d) in the apo form and in complex with various nucleotide substrates. MsStt7d adopts a canonical protein kinase fold and contains all the essential residues at the active site. A novel hairpin motif, found to be a conserved feature of the Stt7/STN7 family and indispensable for the kinase stability, interacts with the activation loop and fi xes it in an active conformation. We have also demonstrated that MsStt7d is a dualspecifi city kinase that phosphorylates both Thr and Tyr residues. Moreover, preliminary in vitro data suggest that it might be capable of phosphorylating a consensus N-terminal pentapeptide of light-harvesting proteins Micromonas Lhcp4 and Arabidopsis Lhcb1 directly. The potential peptide/protein substrate binding site is predicted based on the location of a pseudo-substrate contributed by the adjacent molecule within the crystallographic dimer. The structural and biochemical data presented here provide a framework for an improved understanding on the role of Stt7/STN7 in photosynthetic acclimation.

Cite this article

Jiangtao Guo, Xuepeng Wei, Mei Li, Xiaowei Pan, Wenrui Chang, Zhenfeng Liu . Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae[J]. Protein & Cell, 0 , 4(8) : 607 -619 . DOI: 10.1007/s13238-013-3034-9

References

[1] Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., . (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213-221 .10.1107/S0907444909052925
[2] Allen, J.F. (1992). Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098, 275-335 .10.1016/S0005-2728(09)91014-3
[3] Allen, J.F., Bennett, J., Steinback, K.E., and Arntzen, C.J. (1981). Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25-29 .10.1038/291025a0
[4] Allen, J.F., and Race, H.L. (2002). Will the rea l LHC II kinase please step forward? Sci STKE 2002, pe43.10.1126/stke.2002.155.pe43
[5] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402 .10.1093/nar/25.17.3389
[6] Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G. (2011). iMOSFLM: A new graphical interface for diffractionimage processing with MOSFLM. Acta Crystallogr D 67, 271-281 .10.1107/S0907444910048675
[7] Bellafiore, S., Barneche, F., Peltier, G., and Rochaix, J.D. (2005). State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892-895 .10.1038/nature03286
[8] Bennett, J. (1991). Protein phosphorylation in green plant chloroplasts. Annu Rev Plant Physiol Plant Mol Biol 42, 281-311 .10.1146/annurev.pp.42.060191.001433
[9] Bonardi, V., Pesaresi, P., Becker, T., Schleiff, E., Wagner, R., Pfannschmidt, T., Jahns, P., and Leister, D. (2005). Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437, 1179-1182 .10.1038/nature04016
[10] Bonaventura, C., and Myers, J. (1969). Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189, 366-383 .10.1016/0005-2728(69)90168-6
[11] Bossemeyer, D. (1994). The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem Sci 19, 201-205 .10.1016/0968-0004(94)90022-1
[12] Brown, N.R., Noble, M.E., Endicott, J.A., and Johnson, L.N. (1999). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438-443 .10.1038/15674
[13] Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., . (1998). Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54, 905-921 .10.1107/S0907444998003254
[14] CCP4 (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 50, 760-763 .10.1107/S0907444994003112
[15] Coughlan, S., and Hind, G. (1987). Phosphorylation of thylakoid proteins by a purified kinase. J Biol Chem 262, 8402-8408 .
[16] De Bondt, H.L., Rosenblatt, J., Jancarik, J., Jones, H.D., Morgan, D.O., and Kim, S.H. (1993). Crystal structure of cyclin-dependent kinase 2. Nature 363, 595-602 .10.1038/363595a0
[17] DeLano, W.L. (2002). The PyMOL Molecular Graphics System. (San Carlos, CA: DeLano Scientific). http://www.pymol.org.
[18] Depège, N., Bellafiore, S., and Rochaix, J.D. (2003). Role of chloro- plast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299, 1572-1575 .10.1126/science.1081397
[19] Dietzel, L., Brautigam, K., and Pfannschmidt, T. (2008). Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometryfunctional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275, 1080-1088 .10.1111/j.1742-4658.2008.06264.x
[20] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D 58, 1948-1954 .
[21] Endicott, J.A., Noble, M.E., and Johnson, L.N. (2012). The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 81, 587-613 .10.1146/annurev-biochem-052410-090317
[22] Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr D 62, 72-82 .10.1107/S0907444905036693
[23] Hanks, S.K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9, 576-596 .
[24] Hubbard, S.R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16, 5572-5581 .10.1093/emboj/16.18.5572
[25] Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N.P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313-320 .10.1038/376313a0
[26] Kargul, J., and Barber, J. (2008). Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J 275, 1056-1068 .10.1111/j.1742-4658.2008.06262.x
[27] Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291 .10.1107/S0021889892009944
[28] Lemeille, S., Willig, A., Depege-Fargeix, N., Delessert, C., Bassi, R., and Rochaix, J.D. (2009). Analysis of the chloroplast protein kinase Stt7 during state transitions. PLoS Biol 7, e45.10.1371/journal.pbio.1000045
[29] Lin, Z.F., Lucero, H.A., and Racker, E. (1982). Protein kinases from spinach chloroplasts. I. Purification and identification of two distinct protein kinases. J Biol Chem 257, 12153-12156 .
[30] Lindberg, R.A., Quinn, A.M., and Hunter, T. (1992). Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci 17, 114-119 .10.1016/0968-0004(92)90248-8
[31] Madhusudan, Trafny, E.A., Xuong, N.H., Adams, J.A., Ten Eyck, L.F., Taylor, S.S., and Sowadski, J.M. (1994). cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci 3, 176-187 .10.1002/pro.5560030203
[32] McNicholas, S., Potterton, E., Wilson, K.S., and Noble, M.E.M. (2011). Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D 67, 386-394 .10.1107/S0907444911007281
[33] Mendelow, M., Prorok, M., Salerno, A., and Lawrence, D.S. (1993). ATPase-promoting Dead End Inhibitors of the CAMP-dependent Protein Kinase. J Biol Chem 268, 12289-12296 .
[34] Murata, N. (1969). Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fl uorescence in Porphyridium cruentum. Biochim Biophys Acta 172, 242-251 .10.1016/0005-2728(69)90067-X
[35] Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of Macromolecular structures by maximum-likelihood method. Acta Crystallogr D 53, 240-255 .10.1107/S0907444996012255
[36] Nolen, B., Taylor, S.S., and Ghosh, G. (2004). Regulation of Protein Kinases Controlling Activity through Activation Segment Conformation. Mol Cell 15, 661-675 .10.1016/j.molcel.2004.08.024
[37] Oh, M.H., Wang, X., Clouse, S.D., and Huber, S.C. (2012). Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycinerich loop. Proc Natl Acad Sci U S A 109, 327-332 .10.1073/pnas.1108321109
[38] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 .10.1016/S0076-6879(97)76066-X
[39] Pesaresi, P., Hertle, A., Pribil, M., Kleine, T., Wagner, R., Strissel, H., Ihnatowicz, A., Bonardi, V., Scharfenberg, M., Schneider, A., . (2009). Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21, 2402-2423 .10.1105/tpc.108.064964
[40] Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., and Baginsky, S. (2009). Largescale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150, 889-903 .10.1104/pp.109.138677
[41] Rochaix, J.D. (2007). Role of thylakoid protein kinases in photosynthetic acclimation. FEBS Lett 581, 2768-2775 .10.1016/j.febslet.2007.04.038
[42] Schulze-Gahmen, U., De Bondt, H.L., and Kim, S.H. (1996). Highresolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem 39, 4540-4546 .10.1021/jm960402a
[43] Snyders, S., and Kohorn, B.D. (1999). TAKs, thylakoid membrane protein kinases associated with energy transduction. J Biol Chem 274, 9137-9140 .10.1074/jbc.274.14.9137
[44] Snyders, S., and Kohorn, B.D. (2001). Disruption of thylakoid-associated kinase 1 leads to alteration of light harvesting in Arabidopsis. J Biol Chem 276, 32169-32176 .10.1074/jbc.M102539200
[45] Vainonen, J.P., Hansson, M., and Vener, A.V. (2005). STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins. J Biol Chem 280, 33679-33686 .10.1074/jbc.M505729200
[46] Vener, A.V., van Kan, P.J.M., Rich, P.R., Ohad, I., and Andersson, B. (1997). Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a singleturnover flash. Proc Natl Acad Sci USA 94, 1585-1590 .10.1073/pnas.94.4.1585
[47] Wagner, R., Dietzel, L., Brautigam, K., Fischer, W., and Pfannschmidt, T. (2008). The long-term response to fl uctuating light quality is an important and distinct light acclimation mechanism that supports survival of Arabidopsis thaliana under low light conditions. Planta 228, 573-587 .10.1007/s00425-008-0760-y
[48] Ward, N.E., and O’Brian, C.A. (1992). The intrinsic ATPase activity of protein kinase C is catalyzed at the active site of the enzyme. Biochemistry 31, 5905-5911 .10.1021/bi00140a029
[49] Welburn, J.P.I., Tucker, J.A., Johnson, T., Lindert, L., Morgan, M., Willis, A., Noble, M.E.M., and Endicott, J.A. (2006). How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem 282, 3173-3181 .10.1074/jbc.M609151200
[50] Willig, A., Shapiguzov, A., Goldschmidt-Clermont, M., and Rochaix, J.D. (2011). The phosphorylation status of the chloroplast protein kinase STN7 of Arabidopsis affects its turnover. Plant Physiol 157, 2102-2107 .10.1104/pp.111.187328
[51] Wollman, F.A. (2001). State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20, 3623-3630 .10.1093/emboj/20.14.3623
[52] Zito, F., Finazzi, G., Delosme, R., Nitschke, W., Picot, D., and Wollman, F.A. (1999). The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J 18, 2961-2969 .10.1093/emboj/18.11.2961
Options
Outlines

/