RESEARCH ARTICLE

Structural flexibility and functional interaction of Mediator Cdk8 module

Expand
  • 1. School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; 2. Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, Hefei 230026, China

Received date: 02 Aug 2013

Accepted date: 26 Aug 2013

Published date: 01 Dec 2013

Abstract

Mediator is a highly conserved large protein complex (25 proteins,>1000 kD a) and preeminently responsible for eukaryotic transcription, which contains a dissociable ‘Cdk8 module’. Although increasing evidence demonstrates that Cdk8 module plays both positive and negative roles in transcription regulation, the detailed structure, and subunit organization, molecular mechanism how it regulates transcription remain elusive. Here we used single-particle electron microscopy to characterize the structure and subunit organization of the Cdk8 module and illuminated the substantial mobility of the Med13 subunit results in the structural flexibility. The Cdk8 module interaction with core Mediator is concurrent with active transcription in vivo. An interaction with the Cdk8 module induces core Mediator into very extended conformation in vitro, which is presumed to be an active functional state of Mediator. Taken together, our results illuminated the detailed architecture of Cdk8 module, and suggested the Cdk8 module could positively regulate transcription by modulating Mediator conformation.

Cite this article

Xuejuan Wang, Jianye Wang, Zhenrui Ding, Jinhua Ji, Qianqian Sun, Gang Cai . Structural flexibility and functional interaction of Mediator Cdk8 module[J]. Protein & Cell, 2013 , 4(12) : 911 -920 . DOI: 10.1007/s13238-013-3069-y

References

[1] Adler, A.S., McCleland, M.L., Truong, T., Lau, S., Modrusan, Z., Soukup, T.M., Roose-Girma, M., Blackwood, E.M., and Firestein, R. (2012). CDK 8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res 72, 2129-2139 .10.1158/0008-5472.CAN-11-3886
[2] Andrau, J.C., van de Pasch, L., Lijnzaad, P., Bijma, T., Koerkamp, M.G., van de Peppel, J., Werner, M., and Holstege, F.C. (2006). Genomewide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell 22, 179-192 .10.1016/j.molcel.2006.03.023
[3] Asturias, F.J., Jiang, Y.W., Myers, L.C., Gustafsson, C.M., and Kornberg, R.D. (1999). Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283, 985-987 .10.1126/science.283.5404.985
[4] Belakavadi, M., and Fondell, J.D. (2010). Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol Cell Biol 30, 2437-2448 .10.1128/MCB.01541-09
[5] Bernecky, C., Grob, P., Ebmeier, C.C., Nogales, E., and Taatjes, D.J. (2011). Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol 9, e1000603.10.1371/journal.pbio.1000603
[6] Borggrefe, T., Davis, R., Erdjument-Bromage, H., Tempst, P., and Kornberg, R.D. (2002). A c omplex of the Srb8,-9,-10, and-11 transcriptional regulatory proteins from yeast. J Biol Chem 277, 44202-44207 .10.1074/jbc.M207195200
[7] Cai , G., Chaban, Y.L., Imasaki, T., Kovacs, J.A., Calero, G., Penczek, P.A., Takagi, Y., and Asturias, F.J. (2012). Interaction of the mediator head module with RNA polymerase II. Structure 20, 899-910 .10.1016/j.str.2012.02.023
[8] Cai , G., Imasaki, T., Takagi, Y., and Asturias, F.J. (2009). Mediator structural conservation and implications for the regulation mechanism. Structure 17, 559-567 .10.1016/j.str.2009.01.016
[9] Cai , G., Imasaki, T., Yamada, K., Cardelli, F., Takagi, Y., and Asturias, F.J. (2010). Mediator head module structure and functional interactions. Nat Struct Mol Biol 17, 273-279 .10.1038/nsmb.1757
[10] Chadick, J.Z., and Asturias, F.J. (2005). Structure of eukaryotic Mediator complexes. Trends Biochem Sci 30, 264-271 .10.1016/j.tibs.2005.03.001
[11] Conaway, R.C., and Conaway, J.W. (2011). Function and regulation of the Mediator complex. Curr Opin Genet Dev 21, 225-230 .10.1016/j.gde.2011.01.013
[12] Davis, J.A., Takagi, Y., Kornberg, R.D., and Asturias, F.A. (2002). Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol Cell 10, 409-415 .10.1016/S1097-2765(02)00598-1
[13] Donner, A.J., Ebmeier, C.C., Taatjes, D.J., and Espinosa, J.M. (2010). CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17, 194-201 .10.1038/nsmb.1752
[14] Donner, A.J., Szostek, S., Hoover, J.M., and Espinosa, J.M. (2007). CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell 27, 121-133 .10.1016/j.molcel.2007.05.026
[15] Dotson, M.R., Yuan, C.X., Roeder, R.G., Myers, L.C., Gustafsson, C.M., Jiang, Y.W., Li, Y., Kornberg, R.D., and Asturias, F.J. (2000). Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A 97, 14307-14310 .10.1073/pnas.260489497
[16] Elmlund, H., Baraznenok, V., Lindahl, M., Samuelsen, C.O., Koeck, P.J., Holmberg, S., Hebert, H., and Gustafsson, C.M. (2006). The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc Natl Acad Sci U S A 103, 15788-15793 .10.1073/pnas.0607483103
[17] Firestein, R., Bass, A.J., Kim, S.Y., Dunn, I.F., Silver, S.J., Guney, I., Freed, E., Ligon, A.H., Vena, N., Ogino, S., et al. (2008). CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455, 547-551 .10.1038/nature07179
[18] Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith, A. (1996). SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116, 190-199 .10.1006/jsbi.1996.0030
[19] Hohn, M., Tang, G., Goodyear, G., Baldwin, P.R., Huang, Z., Penczek, P.A., Yang, C., Glaeser, R.M., Adams, P.D., and Ludtke, S.J. (2007). SPARX, a new environment for Cryo-EM image processing. J Struct Biol 157, 47-55 .10.1016/j.jsb.2006.07.003
[20] Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728 .10.1016/S0092-8674(00)81641-4
[21] Knuesel, M.T., Meyer, K.D., Bernecky, C., and Taatjes, D.J. (2009a). The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 23, 439-451 .10.1101/gad.1767009
[22] Knuesel, M.T., Meyer, K.D., Donner, A.J., Espinosa, J.M., and Taatjes, D.J. (2009b). The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 29, 650-661 .10.1128/MCB.00993-08
[23] Kornberg, R.D. (2005). Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30, 235-239 .10.1016/j.tibs.2005.03.011
[24] Lariviere, L., Seizl, M., and Cramer, P. (2012). A s tructural perspective on Mediator function. Curr Opin Cell Biol 24, 305-313 .10.1016/j.ceb.2012.01.007
[25] Lee , J.H., Cai, G., Panigrahi, A.K., Dunham-Ems, S., Nguyen, T.N., Radolf, J.D., Asturias, F.J., and Gunzl, A. (2010). A TFIIH-associated mediator head is a basal factor of small nuclear spliced leader RNA gene transcription in early-diverged trypanosomes. Mol Cell Biol 30, 5502-5513 .10.1128/MCB.00966-10
[26] Lee , T.I., and Young, R.A. (2000). Transcription of eukaryotic proteincoding genes. Annu Rev Genet 34, 77-137 .10.1146/annurev.genet.34.1.77
[27] Malik, S., and Roeder, R.G. (2000). Tra nscriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci 25, 277-283 .10.1016/S0968-0004(00)01596-6
[28] Myers, L.C., Gustafsson, C.M., Bushnell, D.A., Lui, M., Erdjument-Bromage, H., Tempst, P., and Kornberg, R.D. (1998). The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 12, 45-54 .10.1101/gad.12.1.45
[29] Naar, A.M., Lemon, B.D., and Tjian, R. (2001). Transcriptional coactivator complexes. Annu Rev Biochem 70, 475-501 .10.1146/annurev.biochem.70.1.475
[30] Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612 .10.1002/jcc.20084
[31] Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech 9, 359-394 .10.1002/jemt.1060090405
[32] Schneider, E.V., Bottcher, J., Blaesse, M., Neumann, L., Huber, R., and Maskos, K. (2011). The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol 412, 251-266 .10.1016/j.jmb.2011.07.020
[33] Taatjes, D.J., Naar, A.M., Andel, F., Nogales, E., and Tjian, R. (2002). Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058-1062 .10.1126/science.1065249
[34] Tsai, K.L., Sato, S., Tomomori-Sato, C., Conaway, R.C., Conaway, J.W., and Asturias, F.J. (2013). A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction. Nat Struct Mol Biol 20, 611-619 .10.1038/nsmb.2549
[35] Voss, N.R., Lyumkis, D., Cheng, A., Lau, P.W., Mulder, A., Lander, G.C., Brignole, E.J., Fellmann, D., Irving, C., Jacovetty, E.L., et al. (2010). A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. J Struct Biol 169, 389-398 .10.1016/j.jsb.2009.12.005
Options
Outlines

/