Skeletal stem cells in bone development, homeostasis, and disease
Received date: 18 Dec 2023
Accepted date: 19 Feb 2024
Copyright
Tissue-resident stem cells are essential for development and repair, and in the skeleton, this function is fulfilled by recently identified skeletal stem cells (SSCs). However, recent work has identified that SSCs are not monolithic, with long bones, craniofacial sites, and the spine being formed by distinct stem cells. Recent studies have utilized techniques such as fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing to investigate the involvement of SSCs in bone development, homeostasis, and disease. These investigations have allowed researchers to map the lineage commitment trajectory of SSCs in different parts of the body and at different time points. Furthermore, recent studies have shed light on the characteristics of SSCs in both physiological and pathological conditions. This review focuses on discussing the spatiotemporal distribution of SSCs and enhancing our understanding of the diversity and plasticity of SSCs by summarizing recent discoveries.
Guixin Yuan , Xixi Lin , Ying Liu , Matthew B. Greenblatt , Ren Xu . Skeletal stem cells in bone development, homeostasis, and disease[J]. Protein & Cell, 2024 , 15(8) : 559 -574 . DOI: 10.1093/procel/pwae008
1 |
Akiyama H, Kim J-E, Nakashima K et al. Osteochondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A 2005;102:14665–14670.
|
2 |
Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 2004;35:1003–1012.
|
3 |
Ambrosi TH, Chan CKF. A seed-and-soil theory for blood ageing. Nat Cell Biol 2023;25:9–11.
|
4 |
Ambrosi TH, Marecic O, McArdle A et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021a;597:256–262.
|
5 |
Ambrosi TH, Sinha R, Steininger HM et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife 2021b;10:e66063.
|
6 |
Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage—why does hyaline cartilage fail to repair? Adv Drug Deliv Rev 2019;146:289–305.
|
7 |
Arostegui M, Scott RW, Böse K et al. Cellular taxonomy of HiC1(+) mesenchymal progenitor derivatives in the limb: from embryo to adult. Nat Commun 2022;13:4989.
|
8 |
Baccin C, Al-Sabah J, Velten L et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 2020;22:38–48.
|
9 |
Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 2014;30:677–704.
|
10 |
Bianco P, Robey PG. Skeletal stem cells. Development 2015;142:1023–1027.
|
11 |
Bok S, Yallowitz AR, Sun J et al. A multi-stem cell basis for craniosynostosis and calvarial mineralization. Nature 2023;621:804–812.
|
12 |
Chan CKF, Seo EY, Chen JY et al. Identification and specification of the mouse skeletal stem cell. Cell 2015;160:285–298.
|
13 |
Chan CKF, Gulati GS, Sinha R et al. Identification of the human skeletal stem cell. Cell 2018;175:43–56.e21.
|
14 |
Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008;3:S131–S139.
|
15 |
Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet (London, England) 2019;393:364–376.
|
16 |
Debnath S, Yallowitz AR, McCormick J et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018;562:133–139.
|
17 |
Eggenhofer E, Luk F, Dahlke MH et al. The life and fate of mesenchymal stem cells. Front Immunol 2014;5:148.
|
18 |
Feil S, Valtcheva N, Feil R. Inducible Cre mice. Methods Mol Biol 2009;530:343–363.
|
19 |
Gerber HP, Vu TH, Ryan AM et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999;5:623–628.
|
20 |
Greenblatt MB, Ono N, Ayturk UM et al. The unmixing problem: a guide to applying single-cell RNA sequencing to bone. J Bone Miner Res 2019;34:1207–1219.
|
21 |
Gulati GS, Murphy MP, Marecic O et al. Isolation and functional assessment of mouse skeletal stem cell lineage. Nat Protoc 2018;13:1294–1309.
|
22 |
Han Y, Feng H, Sun J et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest 2019;129:1895–1909.
|
23 |
He X, Bougioukli S, Ortega B et al. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone. Bone 2017;103:12–19.
|
24 |
He L, Li Y, Huang X et al. Genetic lineage tracing of resident stem cells by DeaLT. Nat Protoc 2018;13:2217–2246.
|
25 |
He J, Yan J, Wang J et al. Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res 2021;31:742–757.
|
26 |
Jacome-Galarza CE, Percin GI, Muller JT et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 2019;568:541–545.
|
27 |
Jeffery EC, Mann TLA, Pool JA et al. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 2022;29:1547–1561.e6.
|
28 |
Jin A, Xu H, Gao X et al. ScRNA-Seq reveals a distinct osteogenic progenitor of alveolar bone. J Dent Res 2023;102:645–655.
|
29 |
Jing D, Chen Z, Men Y et al. Response of Gli1(+) suture stem cells to mechanical force upon suture expansion. J bone Miner Res Off J Am Soc Bone Miner Res 2022;37:1307–1320.
|
30 |
Jones DC, Wein MN, Glimcher LH. Schnurri-3 is an essential regulator of osteoblast function and adult bone mass. Ann Rheum Dis 2007;66:iii49–iii51.
|
31 |
Josephson AM, Bradaschia-Correa V, Lee S et al. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A 2019;116:6995–7004.
|
32 |
Kara N, Xue Y, Zhao Z et al. Endothelial and Leptin Receptor(+) cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow. Dev Cell 2023;58:348–360.e6.
|
33 |
Khosla S, Farr JN, Tchkonia T et al. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020;16:263–275.
|
34 |
Kretzschmar K, Watt FM. Lineage tracing. Cell 2012;148:33–45.
|
35 |
Li X, Yang S, Yuan G et al. Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation. Bone Res 2022;10:46.
|
36 |
Liu H, Li P, Zhang S et al. Prrx1 marks stem cells for bone, white adipose tissue and dermis in adult mice. Nat Genet 2022;54:1946–1958.
|
37 |
Logan M, Martin JF, Nagy A et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 2002;33:77–80.
|
38 |
Ma L, Chang Q, Pei F et al. Skull progenitor cell-driven meningeal lymphatic restoration improves neurocognitive functions in craniosynostosis. Cell Stem Cell 2023;30:1472–1485.e7.
|
39 |
Maes C, Kobayashi T, Selig MK et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 2010;19:329–344.
|
40 |
Maruyama T. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Keio J Med 2019;68:42.
|
41 |
Maruyama T, Stevens R, Boka A et al. BMPr1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 2021;13:583.
|
42 |
Matsushita Y, Chu AKY, Tsutsumi-Arai C et al. The fate of early perichondrial cells in developing bones. Nat Commun 2022;13:7319.
|
43 |
Matsushita Y, Liu J, Chu AKY et al. Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis. Nat Commun 2023;14:2383.
|
44 |
Matthews BG, Novak S, Sbrana FV et al. Heterogeneity of murine periosteum progenitors involved in fracture healing. Elife 2021;10:e58534.
|
45 |
McLellan MA, Rosenthal NA, Pinto AR. Cre-loxP-mediated recombination: general principles and experimental considerations. Curr Protoc Mouse Biol 2017;7:1–12.
|
46 |
McLeod CM, Mauck RL. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cell Mater 2017;34:217–231.
|
47 |
Men Y, Wang Y, Yi Y et al. Gli1+periodontium stem cells are regulated by osteocytes and occlusal force. Dev Cell 2020;54:639–654.e6.
|
48 |
Méndez-Ferrer S, Michurina TV, Ferraro F et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010;466:829–834.
|
49 |
Mitchell CA, Verovskaya EV, Calero-Nieto FJ et al. Stromal niche inflammation mediated by IL-1 signalling is a targetable driver of haematopoietic ageing. Nat Cell Biol 2023;25:30–41.
|
50 |
Mizoguchi T, Pinho S, Ahmed J et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 2014;29:340–349.
|
51 |
Mizuhashi K, Ono W, Matsushita Y et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 2018;563:254–258.
|
52 |
Mo C, Guo J, Qin J et al. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J 2022;41:e108415.
|
53 |
Murphy MP, Koepke LS, Lopez MT et al. Articular cartilage regeneration by activated skeletal stem cells. Nat Med 2020;26:1583–1592.
|
54 |
Newton PT, Li L, Zhou B et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 2019;567:234–238.
|
55 |
Ng LJ, Wheatley S, Muscat GE et al. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 1997;183:108–121.
|
56 |
Ono N, Ono W, Nagasawa T et al. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol 2014;16:1157–1167.
|
57 |
Pineault KM, Song JY, Kozloff KM et al. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat Commun 2019;10:3168.
|
58 |
Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.
|
59 |
Shen B, Tasdogan A, Ubellacker JM et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 2021;591:438–444.
|
60 |
Shi Y, He G, Lee W-C et al. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 2017;8:2043.
|
61 |
Shu HS, Liu YL, Tang XT et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell 2021;28:2122–2136.e3.
|
62 |
Soriano P. Generalized lacZ expression with the ROSa26 Cre reporter strain. Nat Genet 1999;21:70–71.
|
63 |
Sosa BR, Wang Z, Healey JH et al. A subset of osteosarcoma bears markers of CXCL12-abundant reticular cells. JBMR Plus 2022;6:e10596.
|
64 |
Sun J, Hu L, Bok S et al. A vertebral skeletal stem cell lineage driving metastasis. Nature 2023;621:602–609.
|
65 |
Takahashi A, Nagata M, Gupta A et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci U S A 2019;116:575–580.
|
66 |
Tevlin R, Seo EY, Marecic O et al. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med 2017;9:eaag2809.
|
67 |
Tikhonova AN, Dolgalev I, Hu H et al. The bone marrow microenvironment at single-cell resolution. Nature 2019;569:222–228.
|
68 |
Tsukasaki M, Komatsu N, Negishi-Koga T et al. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat Commun 2022;13:4166.
|
69 |
Wang K, Xu C, Xie X et al. AxiN2+ PDL cells directly contribute to new alveolar bone formation in response to orthodontic tension force. J Dent Res 2022;101:695–703.
|
70 |
Wilk K, Yeh S-CA, Mortensen LJ et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Rep 2017;8:933–946.
|
71 |
Worthley DL, Churchill M, Compton JT et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015;160:269–284.
|
72 |
Xie X, Xu C, Zhao L et al. AxiN2-expressing cells in the periodontal ligament are regulated by bone morphogenetic protein signalling and play a pivotal role in periodontium development. J Clin Periodontol 2022;49:945–956.
|
73 |
Yahara Y, Barrientos T, Tang YJ et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 2020;22:49–59.
|
74 |
Yang W, Wang J, Moore DC et al. PtpN11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 2013;499:491–495.
|
75 |
Yang L, Tsang KY, Tang HC et al. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 2014;111:12097–12102.
|
76 |
Yu M, Ma L, Yuan Y et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 2021;184:243–256.e18.
|
77 |
Yue R, Zhou BO, Shimada IS et al. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 2016;18:782–796.
|
78 |
Zeller R, López-Ríos J, Zuniga A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 2009;10:845–858.
|
79 |
Zhao Q, Eberspaecher H, Lefebvre V et al. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 1997;209:377–386.
|
80 |
Zhao H, Feng J, Ho T-V et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 2015;17:386–396.
|
81 |
Zhou BO, Yue R, Murphy MM et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014a;15:154–168.
|
82 |
Zhou X, von der Mark K, Henry S et al. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 2014b;10: e1004820.
|
83 |
Zhou S, Dai Q, Huang X et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nat Commun 2021;12:6891.
|
/
〈 | 〉 |