DNA methylation clocks for estimating biological age in Chinese cohorts

  • Zikai Zheng 1,2 ,
  • Jiaming Li 1,2 ,
  • Tianzi Liu 1,3 ,
  • Yanling Fan 1 ,
  • Qiao-Cheng Zhai 4,5 ,
  • Muzhao Xiong 1,2 ,
  • Qiao-Ran Wang 1,2 ,
  • Xiaoyan Sun 1,2 ,
  • Qi-Wen Zheng 1 ,
  • Shanshan Che 1,2 ,
  • Beier Jiang 5 ,
  • Quan Zheng 5 ,
  • Cui Wang 1,2 ,
  • Lixiao Liu 1,2 ,
  • Jiale Ping 1,2 ,
  • Si Wang 6,7,8 ,
  • Dan-Dan Gao 5 ,
  • Jinlin Ye 5 ,
  • Kuan Yang 1,2 ,
  • Yuesheng Zuo 1,2 ,
  • Shuai Ma 8,9,10,11,12 ,
  • Yun-Gui Yang , 1,2 ,
  • Jing Qu , 2,8,10,11,12,13 ,
  • Feng Zhang , 4 ,
  • Peilin Jia , 1,2,14 ,
  • Guang-Hui Liu , 2,6,7,8,9,10,11,12 ,
  • Weiqi Zhang , 1,2,8,11
Expand
  • 1. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
  • 4. Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
  • 5. The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
  • 6. Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
  • 7. Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • 8. Aging Biomarker Consortium, Beijing 100101, China
  • 9. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 10. Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 11. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
  • 12. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
  • 13. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 14. National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
ygyang@big.ac.cn
qujing@ioz.ac.cn
fengzhang@wmu.edu.cn
pjia@big.ac.cn
ghliu@ioz.ac.cn
zhangwq@big.ac.cn

Received date: 11 Nov 2023

Accepted date: 10 Jan 2024

Copyright

2024 The Author(s) 2024. Published by Oxford University Press on behalf of Higher Education Press.

Abstract

Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.

Cite this article

Zikai Zheng , Jiaming Li , Tianzi Liu , Yanling Fan , Qiao-Cheng Zhai , Muzhao Xiong , Qiao-Ran Wang , Xiaoyan Sun , Qi-Wen Zheng , Shanshan Che , Beier Jiang , Quan Zheng , Cui Wang , Lixiao Liu , Jiale Ping , Si Wang , Dan-Dan Gao , Jinlin Ye , Kuan Yang , Yuesheng Zuo , Shuai Ma , Yun-Gui Yang , Jing Qu , Feng Zhang , Peilin Jia , Guang-Hui Liu , Weiqi Zhang . DNA methylation clocks for estimating biological age in Chinese cohorts[J]. Protein & Cell, 2024 , 15(8) : 575 -593 . DOI: 10.1093/procel/pwae011

1
Adkins RM, Krushkal J, Tylavsky FA et al. Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol 2011;91:728–736.

DOI

2
Agha G, Mendelson MM, Ward-Caviness CK et al. Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation 2019;140:645–657.

DOI

3
Aging Altas. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 2021;49:D825–d830.

DOI

4
Bacalini MG, Deelen J, Pirazzini C et al. Systemic age-associated DNA hypermethylation of ELOVL2 gene: in vivo and in vitro evidences of a cell replication process. J Gerontol A Biol Sci Med Sci 2017;72:1015–1023.

DOI

5
Bao H, Cao J, Chen M et al; Aging Biomarker Consortium. Biomarkers of aging. Sci China Life Sci 2023;66:893–1066.

DOI

6
Bell CG, Lowe R, Adams PD et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019;20:249.

DOI

7
Belsky DW, Caspi A, Corcoran DL et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife 2022;11:e73420.

DOI

8
Bergstedt J, Azzou S AK, Tsuo K et al. The immune factors driving DNA methylation variation in human blood. Nat Commun 2022;13:5895.

DOI

9
Bocklandt S, Lin W, Sehl ME et al. Epigenetic predictor of age. PLoS One 2011;6:e14821.

DOI

10
Bollepalli S, Korhonen T, Kaprio J et al. EpiSmokEr: a robust classifier to determine smoking status from DNA methylation data. Epigenomics 2019;11:1469–1486.

DOI

11
Cai Y, Song W, Li J et al. The landscape of aging. Sci China Life Sci 2022;65:2354–2454.

DOI

12
Chen BH, Marioni RE, Colicino E et al. DNA methylation- based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 2016;8:1844–1865.

DOI

13
Chen L, Liao H, Huang G et al. Identification of DNA methylation signature and rules for SARS-CoV-2 associated with age. Front Biosci (Landmark edition) 2022;27:204.

DOI

14
Cho S, Lee EH, Kim H et al. Validation of BMI genetic risk score and DNA methylation in a Korean population. Int J Legal Med 2021;135:1201–1212.

DOI

15
Chong J, Xia J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018;34:4313–4314.

DOI

16
Cui M, Atmanli A, Morales MG et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun 2021;12:5270.

DOI

17
D’Alessandro A, Kriebardis AG, Rinalducci S et al. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion 2015;55:205–219.

DOI

18
Deelen J, Kettunen J, Fischer K et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun 2019;10:3346.

DOI

19
Donlon TA, Morris BJ, Chen R et al. FOXO3 longevity interactome on chromosome 6. Aging Cell 2017;16:1016–1025.

DOI

20
Du Z, Ma L, Qu H et al. Whole Genome analyses of Chinese population and De Novo Assembly of A Northern Han Genome. Genom Proteom Bioinform 2019;17:229–247.

DOI

21
Elliott ML, Caspi A, Houts RM et al. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging 2021;1:295–308.

DOI

22
Field AE, Robertson NA, Wang T et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol Cell 2018;71:882–895.

DOI

23
Florian MC, Klenk J, Marka G et al. Expression and activity of the small RhoGTPase Cdc42 in blood cells of older adults are associated with age and cardiovascular disease. J Gerontol A Biol Sci Med Sci 2017;72:1196–1200.

DOI

24
Garagnani P, Bacalini MG, Pirazzini C et al. Methylation of ELOVL 2 gene as a new epigenetic marker of age. Aging Cell 2012a;11:1132–1134.

DOI

25
Garagnani P, Bacalini MG, Pirazzini C et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 2012b;11:1132–1134.

DOI

26
Gu Z, Gu L, Eils R et al. circlize Implements and enhances circular visualization in R. Bioinformatics 2014;30:2811–2812.

DOI

27
Habano W, Miura T, Terashima J et al. Aryl hydrocarbon receptor as a DNA methylation reader in the stress response pathway. Toxicology 2022;470:153154.

DOI

28
Hannum G, Guinney J, Zhao L et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49:359–367.

DOI

29
Hansen K D (2017). IlluminaHumanMethylationEPICanno. ilm10b4.hg19: annotation for Illumina’s EPIC methylation arrays.

30
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinf 2013;14:7.

DOI

31
Hassouneh F, Goldeck D, Pera A et al. Functional changes of T-Cell subsets with age and CMV infection. Int J Mol Sci 2021;22:9973.

DOI

32
Holzscheck N, Falckenhayn C, Söhle J et al. Modeling transcriptomic age using knowledge-primed artificial neural networks. npj Aging Mech Dis 2021;7:15.

DOI

33
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14:R115.

DOI

34
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018a;19:371–384.

DOI

35
Horvath S, Gurven M, Levine ME et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 2016;17:171.

DOI

36
Horvath S, Oshima J, Martin GM et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY) 2018b;10:1758–1775.

DOI

37
Houseman EA, Accomando WP, Koestler DC et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf 2012;13:1–16.

DOI

38
Huang D, Zhao Q, Yang K et al. CRL2(APPBP2)-mediated TSPYL2 degradation counteracts human mesenchymal stem cell senescence. Sci China Life Sci 2023;67:460–474.

DOI

39
Jansen R, Han LK, Verhoeven JE et al. An integrative study of five biological clocks in somatic and mental health. Elife 2021;10:e59479.

DOI

40
Jia Y-J, Wang J, Ren J-R et al; Aging Biomarker Consortium. A framework of biomarkers for brain aging: a consensus statement by the Aging Biomarker Consortium. Life Medicine 2023c;2:lnad017.

DOI

41
Jing Y, Zuo Y, Yu Y et al. Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging. Protein Cell 2023;14:497–512.

DOI

42
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007;8:118–127.

DOI

43
Jung SE, Lim SM, Hong SR et al. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci Int Genet 2019;38:1–8.

DOI

44
Kananen L, Nevalainen T, Jylhävä J et al. Cytomegalovirus infection accelerates epigenetic aging. Exp Gerontol 2015;72:227–229.

DOI

45
Kassebaum NJ, Arora M, Barber RM et al. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 2016;388:1603–1658.

DOI

46
Kim S. An R package for a fast calculation to semi- partial correlation coefficients. Commun Stat Appl Methods 2015;22:665–674.

DOI

47
Kim EJ, Choi MJ, Lee JH et al. Extracellular fluid/intracellular fluid volume ratio as a novel risk indicator for all-cause mortality and cardiovascular disease in hemodialysis patients. PLoS One 2017;12:e0170272.

DOI

48
Knight AK, Craig JM, Theda C et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol 2016;17:206.

DOI

49
Krishnamurthy J, Torrice C, Ramsey MR et al. Ink4a/ Arf expression is a biomarker of aging. J Clin Invest 2004;114:1299–1307.

DOI

50
Kulakovskiy IV, Vorontsov IE, Yevshin IS et al. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res 2016;44:D116–D125.

DOI

51
Lehallier B, Gate D, Schaum N et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 2019;25:1843–1850.

DOI

52
Lehrbach NJ, Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. Elife 2019;8:e44425.

DOI

53
Lei J, Wang S, Kang W et al. FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein Cell 2021;12:145–151.

DOI

54
Levine ME, Lu AT, Quach A et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018;10:573–591.

DOI

55
Li H, Zhu L, Wang R et al. Aging weakens Th17 cell pathogenicity and ameliorates experimental autoimmune uveitis in mice. Protein Cell 2022;13:422–445.

DOI

56
Li J, Xiong M, Fu XH et al. Determining a multimodal aging clock in a cohort of Chinese women. Med 2023a;4:825–848.e13.

DOI

57
Li H, Wu S, Li J et al. HALL: a comprehensive database for human aging and longevity studies. Nucleic Acids Res 2023b;5:D909–D918.

DOI

58
Liang J, Wang J, Azfer A et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 2008;283:6337–6346.

DOI

59
Liu C, Marioni RE, Hedman Å K et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry 2018;23:422–433.

DOI

60
Liu X, Jiao H, Zhang B et al. Migrasomes trigger innate immune activation and mediate transmission of senescence signals across human cells. Life Medicine 2023;2:lnad050.

DOI

61
López-Otín C, Blasco MA, Partridge L et al. Hallmarks of aging: An expanding universe. Cell 2023;186:243–278.

DOI

62
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.

DOI

63
Lu J, Chen G, Sorokina A et al. Cytomegalovirus infection reduced CD70 expression, signaling and expansion of viral specific memory CD8(+) T cells in healthy human adults. Immun Ageing 2022;19:54.

DOI

64
Lu AT, Fei Z, Haghani A et al. Universal DNA methylation age across mammalian tissues. Nat Aging 2023a;3:1144–1166.

65
Lu H, Jing Y, Zhang C et al. Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics. Protein Cell 2023b:pwad063.

DOI

66
Lu J, Li H, Zhang G et al. Age-related alterations in peripheral immune landscape with magnified impact on poststroke brain. Research (Wash D C) 2023c;6:0287.

DOI

67
Luo H, Zhao Q, Wei W et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med 2020;12:eaax7533.

DOI

68
Ma S, Chi X, Cai Y et al. Decoding aging hallmarks at the single-cell level. Ann Rev Biomed Data Sci 2023a;6:129–152.

DOI

69
Marabita F, Almgren M, Lindholm ME et al. An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics 2013;8:333–346.

DOI

70
Martínez-Quintana E, Rodríguez-González F. Iron deficiency anemia detection from hematology parameters in adult congenital heart disease patients. Congenit Heart Dis 2013;8:117–123.

DOI

71
Marttila S, Kananen L, Häyrynen S et al. Ageing-associated changes in the human DNA methylome: genomic locations and effects on gene expression. BMC Genomics 2015;16:179.

DOI

72
Matsuura-Suzuki E, Shimazu T, Takahashi M et al. METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. eLife 2022;11:e72780.

DOI

73
McCrory C, Fiorito G, Hernandez B et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci 2021;76:741–749.

DOI

74
Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 1992;20:5085–5092.

DOI

75
Merani S, Pawelec G, Kuchel G et al. Impact of aging and cytomegalovirus on immunological response to influenza vaccination and infection. Front Immunol 2017;8:undefined.

DOI

76
Moskowitz DM, Zhang DW, Hu B et al. Epigenomics of human CD8 T cell differentiation and aging. Sci Immunol 2017b;2:eaag0192.

DOI

77
Mulloy JC, Cancelas JA, Filippi MD et al. Rho GTPases in hematopoiesis and hemopathies. Blood 2010;115:936–947.

DOI

78
Naue J, Hoefsloot H CJ, Mook O RF et al. Chronological age prediction based on DNA methylation: massive parallel sequencing and random forest regression. Forensic Sci Int Genet 2017;31:19–28.

DOI

79
Ngo ST, Steyn FJ. The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis. Cell Regeneration 2015;4:5.

DOI

80
Nie C, Li Y, Li R et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell reports 2022;38:110459.

DOI

81
Nordlund J, Bäcklin CL, Wahlberg P et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 2013;14:r105.

DOI

82
Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S et al. The impact of sex on gene expression across human tissues. Science 2020;369:eaba3066.

83
Oshchepkova E, Sizentsova Y, Wiebe D et al. Meta-analysis of transcriptome data detected new potential players in response to dioxin exposure in humans. Int J Mol Sci 2020;21:7858.

DOI

84
Pal S, Tyler JK. Epigenetics and aging. Sci Adv 2016;2:e1600584.

DOI

85
Park JL, Kim JH, Seo E et al. Identification and evaluation of age-correlated DNA methylation markers for forensic use. Forensic Sci Int Genet 2016;23:64–70.

DOI

86
Park C, Ha J, Park S. Prediction of Alzheimer’s disease based on deep neural network by integrating gene expression and DNA methylation dataset. Expert Syst Appl 2020;140:112873.

DOI

87
Parry HM, Zuo J, Frumento G et al. Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing 2016;13:1.

DOI

88
Pérez-Morales R, Donate-Correa J, Martín-Núñez E et al. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren Fail 2021;43:821–829.

DOI

89
Poloni C, Szyf M, Cheishvili D et al. Are the healthy vulnerable? Cytomegalovirus seropositivity in healthy adults is associated with accelerated epigenetic age and immune dysregulation. J Infect Dis 2022;225:443–452.

DOI

90
Puga A, Barnes SJ, Dalton TP et al. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J Biol Chem 2000;275:2943–2950.

DOI

91
Ramos E, Frontera WR, Llopart A et al. Muscle strength and hormonal levels in adolescents: gender related differences. Int J Sports Med 1998;19:526–531.

DOI

92
Ritchie ME, Phipson B, Wu D et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.

DOI

93
Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. Nat Rev Genet 2022;23:715–727.

DOI

94
Salas LA, Koestler DC, Butler RA et al. An optimized library for reference-based deconvolution of wholeblood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray. Genome Biol 2018;19:64.

DOI

95
Seale K, Horvath S, Teschendorff A et al. Making sense of the ageing methylome. Nat Rev Genet 2022;23:585–605.

DOI

96
Simon N, Friedman J, Hastie T et al. Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. J Stat Softw 2011;39:1–13.

DOI

97
Slieker RC, Relton CL, Gaunt TR et al. Age-related DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as exception. Epigenetics Chrom 2018;11:1–11.

DOI

98
Stowe RP, Peek MK, Cutchin MP et al. Reactivation of herpes simplex virus type 1 is associated with cytomegalovirus and age. J Med Virol 2012;84:1797–1802.

DOI

99
Thakur S, Dhiman M, Tell G et al. A review on protein–protein interaction network of APE1/Ref‐1 and its associated biological functions. Cell Biochem Funct 2015;33:101–112.

DOI

100
Tian Y, Morris TJ, Webster AP et al. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 2017;33:3982–3984.

DOI

101
Wang C, Chen L, Yang Y et al. Identification of potential blood biomarkers for Parkinson’s disease by gene expression and DNA methylation data integration analysis. Clin Epigenetics 2019;11:24.

DOI

102
Wang S, Cheng F, Ji Q et al. Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein Cell 2022;13:615–622.

DOI

103
Wang Y, Grant OA, Zhai X et al. Insights into ageing rates comparison across tissues from recalibrating cerebellum DNA methylation clock. GeroScience 2023;46:39–56.

DOI

104
Waters S, Brook E, Lee S et al. HIV patients, healthy aging and transplant recipients can reveal the hidden footprints of CMV. Clin Immunol 2018;187:107–112.

DOI

105
Wezyk M, Spólnicka M, Pośpiech E et al. Hypermethylation of TRIM59 and KLF14 influences Cell Death Signaling in Familial Alzheimer’s Disease. Oxid Med Cell Longev 2018;2018:6918797.

DOI

106
Williams SA, Kivimaki M, Langenberg C et al. Plasma protein patterns as comprehensive indicators of health. Nat Med 2019;25:1851–1857.

DOI

107
Woodson RD, Torrance JD, Shappell SD et al. The effect of cardiac disease on hemoglobin-oxygen binding. J Clin Invest 1970;49:1349–1356.

DOI

108
Wu Z, Qu J, Zhang W et al. Stress, epigenetics, and aging: unraveling the intricate crosstalk. Mol Cell 2024;84:34–54.

DOI

109
Xia Y-y, Ding Y-b, Liu X-q et al. Racial/ethnic disparities in human DNA methylation. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014;1846:258–262.

DOI

110
Yan H, Wang R, Ma S et al. Lineage Landscape: a comprehensive database that records lineage commitment across species. Nucleic Acids Res 2023;51:D1061–D1066.

DOI

111
Yao L, Shen H, Laird PW et al. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes. Genome Biol 2015;16:105.

DOI

112
Yousefi PD, Suderman M, Langdon R et al. DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet 2022;23:369–383.

DOI

113
Zhang Y, Foreman O, Wigle DA et al. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 2012;122:4362–4374.

DOI

114
Zhang Y, Wilson R, Heiss J et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun 2017;8:14617.

DOI

115
Zhang X, Smits AH, van Tilburg G BA et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protocols 2018;13:530–550.

DOI

116
Zhang S, Wu Z, Shi Y et al. FTO stabilizes MIS12 and counteracts senescence. Protein Cell 2022;13:954–960.

DOI

117
Zhang W, Che Y, Tang X et al. Aging Biomarker Consortium. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement. Life Medicine 2023a;2:lnad035.

DOI

118
Zhang L, Guo J, Liu Y et al. Aging Biomarker Consortium. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. Life Medicine 2023b;2:lnad033.

DOI

119
Zhang X, Qin X, Wang S. Commensal bacteria and cancer immunotherapy: strategy and opportunity. Life Medicine 2023c;2:lnad024.

DOI

120
Zhang B, Yan H, Liu X et al. SenoIndex: S100A8/S100A9 as a novel aging biomarker. Life Medicine 2023d;2:lnad022.

DOI

121
Zhao H, Yang K, Zhang Y et al. APOE-mediated suppression of the lncRNA MEG3 protects human cardiovascular cells from chronic inflammation. Protein Cell 2023;14:908–913.

DOI

122
Zheng Y, Joyce BT, Colicino E et al. Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine 2016;5:68–73.

DOI

123
Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 2017;45:e22.

DOI

124
Zhou Y, Zhou B, Pache L et al. Metascape provides a biologist- oriented resource for the analysis of systems- level datasets. Nat Commun 2019;10:1523.

DOI

Outlines

/