LETTER

Deciphering the placental abnormalities associated with somatic cell nuclear transfer at single-nucleus resolution

  • Liyuan Jiang 1,2,3 ,
  • Xin Wang 2,3,4,5 ,
  • Leyun Wang 2,3,6 ,
  • Sinan Ma 1,2,3 ,
  • Yali Ding 2,3,5 ,
  • Chao Liu 2,3,6 ,
  • Siqi Wang 2,3,6 ,
  • Xuan Shao 2,3,6 ,
  • Ying Zhang 2,3,6 ,
  • Zhikun Li 2,3,6 ,
  • Wei Li 2,3,5,6 ,
  • Guihai Feng , 2,3,6 ,
  • Qi Zhou , 1,2,3,5,6
Expand
  • 1. College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
  • 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China
  • 4. Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5. University of Chinese Academy of Sciences, Beijing 100049, China
  • 6. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
fenggh@ioz.ac.cn
zhouqi@ioz.ac.cn

Accepted date: 06 May 2023

Copyright

2023 The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.

Cite this article

Liyuan Jiang , Xin Wang , Leyun Wang , Sinan Ma , Yali Ding , Chao Liu , Siqi Wang , Xuan Shao , Ying Zhang , Zhikun Li , Wei Li , Guihai Feng , Qi Zhou . Deciphering the placental abnormalities associated with somatic cell nuclear transfer at single-nucleus resolution[J]. Protein & Cell, 2023 , 14(12) : 924 -928 . DOI: 10.1093/procel/pwad030

1
Andrews S, Krueger C, Mellado-Lopez M et al. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun 2023;14:371.

DOI

2
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020;747:144655.

DOI

3
Chen X, Tang AT, Tober J et al. Mouse placenta fetal macrophages arise from endothelial cells outside the placenta. Dev Cell 2022;57:2652–2660.e3.

DOI

4
Czikk MJ, Drewlo S, Baczyk D et al. Dual specificity phosphatase 9 (DUSP9) expression is down-regulated in the severe pre-eclamptic placenta. Placenta 2013;34:174–181.

DOI

5
Inoue K, Kohda T, Sugimoto M et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 2010;330:496–499.

DOI

6
Inoue A, Jiang L, Lu F et al. Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 2017;31:1927–1932.

DOI

7
Jiang X, Wang Y, Xiao Z et al. A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov 2023;9:30.

DOI

8
Marsh B, Blelloch R. Single nuclei RNA-seq of mouse placental labyrinth development. Elife 2020;9:e60266.

DOI

9
Matoba S, Zhang Y. Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 2018;23:471–485.

DOI

10
Matoba S, Wang H, Jiang L et al. Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development. Cell Stem Cell 2018;23:343–354.e5.

DOI

11
Shao X, Yu W, Yang Y et al. The mystery of the life tree: the placentasdagger. Biol Reprod 2022;107:301–316.

DOI

12
Simmons DG, Cross JC. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev Biol 2005;284:12–24.

DOI

13
Wang L-Y, Li Z-K, Wang L-B et al. Overcoming intrinsic H3K27me3 imprinting barriers improves post-implantation development after somatic cell nuclear transfer. Cell Stem Cell 2020;27:315–325.e5.

DOI

14
Xie Z, Zhang W, Zhang Y. Loss of Slc38a4 imprinting is a major cause of mouse placenta hyperplasia in somatic cell nuclear transferred embryos at late gestation. Cell Rep 2022;38:110407.

DOI

15
Zhou X, Xu Y, Ren S et al. Single-cell RNA-seq revealed diverse cell types in the mouse placenta at mid-gestation. Exp Cell Res 2021;405:112715.

DOI

Outlines

/