RESEARCH ARTICLE

A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis

  • Daoyuan Huang 1,3 ,
  • Yuesheng Zuo 5,7,9 ,
  • Chen Zhang 10 ,
  • Guoqiang Sun 2,5 ,
  • Ying Jing 2,5 ,
  • Jinghui Lei 1,3 ,
  • Shuai Ma 4,6,8,16 ,
  • Shuhui Sun 4,6,8 ,
  • Huifen Lu 1,3 ,
  • Yusheng Cai 4,6,8 ,
  • Weiqi Zhang 5,7,8,9,11,12,16 ,
  • Fei Gao 2,5,6,8 ,
  • Andy Peng Xiang 13,14 ,
  • Juan Carlos Izpisua Belmonte 15 ,
  • Guang-Hui Liu , 1,3,4,5,6,8,16 ,
  • Jing Qu , 2,5,6,8,16 ,
  • Si Wang , 1,3,10,16
Expand
  • 1. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
  • 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • 4. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 5. University of Chinese Academy of Sciences, Beijing 100049, China
  • 6. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
  • 7. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
  • 8. Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
  • 9. China National Center for Bioinformation, Beijing 100101, China
  • 10. The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
  • 11. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
  • 12. Sino-Danish Center for Education and Research, Beijing 101408, China
  • 13. Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
  • 14. Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
  • 15. Altos Labs, Inc., San Diego, CA 92121, USA and
  • 16. Aging Biomarker Consortium, China
ghliu@ioz.ac.cn
qujing@ioz.ac.cn
wangsi@xwh.ccmu.edu.cn

Received date: 23 Aug 2022

Accepted date: 29 Sep 2022

Copyright

2022 The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.

Abstract

The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms’ Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.

Cite this article

Daoyuan Huang , Yuesheng Zuo , Chen Zhang , Guoqiang Sun , Ying Jing , Jinghui Lei , Shuai Ma , Shuhui Sun , Huifen Lu , Yusheng Cai , Weiqi Zhang , Fei Gao , Andy Peng Xiang , Juan Carlos Izpisua Belmonte , Guang-Hui Liu , Jing Qu , Si Wang . A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis[J]. Protein & Cell, 2023 , 14(12) : 888 -907 . DOI: 10.1093/procel/pwac057

1
Aging Atlas C. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 2021;49:D825–D830.

DOI

2
Aibar S, González-Blas CB, Moerman T et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017;14:1083–1086.

DOI

3
Alfano M, Tascini AS, Pederzoli F et al. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat Commun 2021;12:5205.

DOI

4
Angelidis I, Simon LM, Fernandez IE et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 2019;10:963.

DOI

5
Bai L, Shi G, Zhang X et al. Transgenic expression of BRCA1 disturbs hematopoietic stem and progenitor cells quiescence and function. Exp Cell Res 2013;319:2739–2746.

DOI

6
Bai S, Fu K, Yin H et al. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development (Cambridge, England) 2018;145:dev164855.

DOI

7
Bao J, Rousseaux S, Shen J et al. The arginine methyltransferase CARM1 represses p300•ACT•CREMτ activity and is required for spermiogenesis. Nucleic Acids Res 2018;46:4327–4343.

DOI

8
Basaria S. Reproductive aging in men. Endocrinol Metab Clin N Am 2013;42:255–270.

DOI

9
Basu D, Hu Y, Huggins LA et al. Novel reversible model of atherosclerosis and regression using oligonucleotide regulation of the LDL receptor. Circ Res 2018;122:560–567.

DOI

10
Butler A, Hoffman P, Smibert P et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018;36:411–420.

DOI

11
Cai Y, Song W, Li J et al. The landscape of aging. Sci China Life Sci 2022;65:2354–2454.

DOI

12
Cansby E, Magnusson E, Nuñez-Durán E et al. STK25 regulates cardiovascular disease progression in a mouse model of hypercholesterolemia. Arterioscler Thromb Vasc Biol 2018;38:1723–1737.

DOI

13
Cao C, Ma Q, Mo S et al. Single-cell RNA sequencing defines the regulation of spermatogenesis by Sertoli-cell androgen signaling. Front Cell Dev Biol 2021;9:763267.

DOI

14
Chang H, Gao F, Guillou F et al. Wt1 negatively regulates beta-catenin signaling during testis development. Development (Cambridge, England) 2008;135:1875–1885.

DOI

15
Chen SR, Chen M, Wang XN et al. The Wilms tumor gene, Wt1, maintains testicular cord integrity by regulating the expression of Col4a1 and Col4a2. Biol Reprod 2013;88:56.

DOI

16
Chhabra SN, Booth BW. Asymmetric cell division of mammary stem cells. Cell Div 2021;16:5.

DOI

17
Debacq-Chainiaux F, Erusalimsky JD, Campisi J et al. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 2009;4:1798–1806.

DOI

18
Dym M. The fine structure of the monkey (Macaca) Sertoli cell and its role in maintaining the blood-testis barrier. Anatom Rec 1973;175:639–656.

DOI

19
Dym M, Fawcett DW. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 1970;3:308–326.

DOI

20
Efremova M, Vento-Tormo M, Teichmann SA et al. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 2020;15:1484–1506.

DOI

21
Fang X, Huang LL, Xu J et al. Proteomics and single-cell RNA analysis of Akap4-knockout mice model confirm indispensable role of Akap4 in spermatogenesis. Dev Biol 2019;454:118–127.

DOI

22
Fang X, Jiang M, Zhou M et al. Elucidating the developmental dynamics of mouse stromal cells at single-cell level. Life Med 2022;1:45–48.

DOI

23
Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 2018;29:207–214.

DOI

24
Finkelstein JS, Lee H, Burnett-Bowie SA et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med 2013;369:1011–1022.

DOI

25
Fleming SJ, Marioni JC, Babadi M. CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. bioRxiv 2019;791699.

26
Florian MC, Geiger H. Concise review: polarity in stem cells, disease, and aging. Stem Cells 2010;28:1623–1629.

DOI

27
Ganapathy AS, Saha K, Suchanec E et al. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability. Autophagy 2022;18:2086–2103.

DOI

28
Georgakopoulou EA, Tsimaratou K, Evangelou K et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 2013;5:37–50.

DOI

29
Goodell MA, Rando TA. Stem cells and healthy aging. Science 2015;350:1199–1204.

DOI

30
Gregoire EP, Stevant I, Chassot AA et al. NRG1 signalling regulates the establishment of Sertoli cell stock in the mouse testis. Mol Cell Endocrinol 2018;478:17–31.

DOI

31
Griswold MD. Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 1995;52:211–216.

DOI

32
Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998;9:411–416.

DOI

33
Gunes S, Hekim GN, Arslan MA et al. Effects of aging on the male reproductive system. J Assist Reprod Genet 2016;33:441–454.

DOI

34
Hastie ND. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development (Cambridge, England) 2017;144:2862–2872.

DOI

35
Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2020;8:903–914.

DOI

36
Huang G, Liu L, Wang H et al. Tet1 deficiency leads to premature reproductive aging by reducing spermatogonia stem cells and germ cell differentiation. iScience 2020;23:100908.

DOI

37
Inaba M, Yamashita YM. Asymmetric stem cell division: precision for robustness. Cell Stem Cell 2012;11:461–469.

DOI

38
Inagaki M, Irie K, Ishizaki H et al. Role of cell adhesion molecule nectin-3 in spermatid development. Genes Cells Devoted Mol Cell Mech 2006;11:1125–1132.

DOI

39
Ito C, Akutsu H, Yao R et al. Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa, Odf2-DDS, in mice. Sci Rep 2019;9:14249.

DOI

40
Johnson L, Nguyen HB, Petty CS et al. Quantification of human spermatogenesis: germ cell degeneration during spermatocytogenesis and meiosis in testes from younger and older adult men. Biol Reprod 1987;37:739–747.

DOI

41
Kallio M, Chang Y, Manuel M et al. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 2002;21:2591–2601.

DOI

42
Kanehisa M, Furumichi M, Sato Y et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 2021;49:D545–D551.

DOI

43
Kaufman BA, Van Houten B. POLB: A new role of DNA polymerase beta in mitochondrial base excision repair. DNA Repair (Amst) 2017;60:A1–A5.

DOI

44
Kaufman JM, Lapauw B, Mahmoud A et al. Aging and the male reproductive system. Endocr Rev 2019;40:906–972.

DOI

45
Kaur G, Thompson LA, Dufour JM. Sertoli cells—immunological sentinels of spermatogenesis. Semin Cell Dev Biol 2014;30:36–44.

DOI

46
Khawar MB, Liu C, Gao F et al. Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy. Protein Cell 2021;12:67–75.

DOI

47
Komeya M, Ogawa T. Spermatogonial stem cells: Progress and prospects. Asian J Androl 2015;17:771–775.

DOI

48
Kovalenko OV, Wiese C, Schild D. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51. Nucleic Acids Res 2006;34:5081–5092.

DOI

49
Krishnaswami SR, Grindberg RV, Novotny M et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 2016;11:499–524.

DOI

50
Kubota H, Brinster RLJBR. Spermatogonial stem cells†. Biol Reprod 2018;99:52–74.

DOI

51
Lahoud MH, Ristevski S, Venter DJ et al. Gene targeting of Desrt, a novel ARID class DNA-binding protein, causes growth retardation and abnormal development of reproductive organs. Genome Res 2001;11:1327–1334.

DOI

52
Lee JJ, Park IH, Kwak MS et al. HMGB1 orchestrates STING-mediated senescence via TRIM30α modulation in cancer cells. Cell Death Discov 2021;7:28.

DOI

53
Lee JJ, Park IH, Rhee WJ et al. HMGB1 modulates the balance between senescence and apoptosis in response to genotoxic stress. FASEB J 2019;33:10942–10953.

DOI

54
Li J, Zheng Y, Yan P et al. A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 2021;8:nwaa127.

DOI

55
Liberzon A, Birger C, Thorvaldsdóttir H et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015;1:417–425.

DOI

56
Lim S, Kierzek M, O’Connor AE et al. CRISP2 is a regulator of multiple aspects of sperm function and male fertility. Endocrinology 2019;160:915–924.

DOI

57
Liu J, Weaver J, Jin X et al. Nitric oxide interacts with Caveolin-1 to facilitate autophagy-lysosome-mediated Claudin-5 degradation in oxygen-glucose deprivation-treated endothelial cells. Mol Neurobiol 2016;53:5935–5947.

DOI

58
Luo J, Gupta V, Kern B et al. Role of FYN kinase in spermatogenesis: defects characteristic of Fyn-null sperm in mice. Biol Reprod 2012;86:1–8.

DOI

59
Ma S, Sun S, Geng L et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 2020;180:984–1001.e22.

DOI

60
Ma S, Sun S, Li J et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 2021;31:415–432.

DOI

61
Ma S, Wang S, Ye Y et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 2022;29:990–1005.e10.

DOI

62
Maekawa M, Ito C, Toyama Y et al. Localisation of RA175 (Cadm1), a cell adhesion molecule of the immunoglobulin superfamily, in the mouse testis, and analysis of male infertility in the RA175-deficient mouse. Andrologia 2011;43:180–188.

DOI

63
Maekawa M, Toyama Y, Yasuda M et al. Fyn tyrosine kinase in Sertoli cells is involved in mouse spermatogenesis. Biol Reprod 2002;66:211–221.

DOI

64
Matzkin ME, Calandra RS, Rossi SP et al. Hallmarks of testicular aging: the challenge of anti-inflammatory and antioxidant therapies using natural and/or pharmacological compounds to improve the physiopathological status of the aged male gonad. Cells 2021;10:3114.

DOI

65
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019;8:329–337.e4.

DOI

66
Metcalf CE, Wassarman DA. Nucleolar colocalization of TAF1 and testis-specific TAFs during Drosophila spermatogenesis. Dev Dyn 2007;236:2836–2843.

DOI

67
Miquel J, Lundgren PR, Johnson JE Jr. Spectrophotofluorometric and electron microscopic study of lipofuscin accumulation in the testis of aging mice. J Gerontol 1978;33:3–19.

DOI

68
Mo H, He J, Yuan Z et al. WT1 is involved in the Akt-JNK pathway dependent autophagy through directly regulating Gas1 expression in human osteosarcoma cells. Biochem Biophys Res Commun 2016;478:74–80.

DOI

69
Moerman T, Aibar Santos S, Bravo González-Blas C et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics (Oxford, England) 2019;35:2159–2161.

DOI

70
Nie X, Munyoki SK, Sukhwani M, Schmid N, Missel A, Emery BR, DonorConnect, Stukenborg JB, Mayerhofer A, Orwig KE et al. Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev Cell 2022;57:1160–1176e5.

DOI

71
Nishino J, Kim I, Chada K et al. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 2008;135:227–239.

DOI

72
O’Donnell L, Smith LB, Rebourcet D. Sertoli cells as key drivers of testis function. Semin Cell Dev Biol 2022;121:2–9.

DOI

73
Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev 2012;92:577–595.

DOI

74
Oatley JM, Brinster RLJM. Spermatogonial stem cells. Methods Enzymol 2006;419:259–282.

DOI

75
Oral O, Uchida I, Eto K et al. Promotion of spermatogonial proliferation by neuregulin 1 in newt (Cynops pyrrhogaster) testis. Mech Dev 2008;125:906–917.

DOI

76
Paniagua R, Nistal M, Sáez FJ et al. Ultrastructure of the aging human testis. J Electron Microsc Tech 1991;19:241–260.

DOI

77
Perheentupa A, Huhtaniemi I. Aging of the human ovary and testis. Mol Cell Endocrinol 2009;299:2–13.

DOI

78
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020;48:D845–D855.

DOI

79
Sampson N, Untergasser G, Plas E et al. The ageing male reproductive tract. J Pathol 2007;211:206–218.

DOI

80
Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow. Cell 2019;179:937–952.e18.e18.

DOI

81
Shah W, Khan R, Shah B et al. The molecular mechanism of sex hormones on Sertoli cell development and proliferation. Front Endocrinol (Lausanne) 2021;12:648141.

DOI

82
Shannon P, Markiel A, Ozier O et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.

DOI

83
Shi L, Zhou T, Huang Q et al. Intraflagellar transport protein 74 is essential for spermatogenesis and male fertility in mice†. Biol Reprod 2019;101:188–199.

DOI

84
Siu MK, Cheng CY. Extracellular matrix and its role in spermatogenesis. Adv Exp Med Biol 2008;636:74–91.

DOI

85
Stewart AG, Thomas B, Koff J. TGF-β: master regulator of inflammation and fibrosis. Respirology (Carlton, Vic) 2018;23:1096–1097.

DOI

86
Syed V, Hecht NB. Disruption of germ cell–Sertoli cell interactions leads to spermatogenic defects. Mol Cell Endocrinol 2002;186:155–157.

DOI

87
Trapnell C, Cacchiarelli D, Grimsby J et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014;32:381–386.

DOI

88
Umehara T, Kawashima I, Kawai T et al. Neuregulin 1 regulates proliferation of leydig cells to support spermatogenesis and sexual behavior in adult mice. Endocrinology 2016;157:4899–4913.

DOI

89
Urban N, Blomfield IM, Guillemot F. Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 2019;104:834–848.

DOI

90
Wang G, Zhang J, Moskophidis D et al. Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis (New York, NY: 2000) 2003;36:48–61.

DOI

91
Wang RS, Yeh S, Tzeng CR et al. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 2009;30:119–132.

DOI

92
Wang S, Cheng F, Ji Q et al. Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein Cell 2022a;13:615–622.

DOI

93
Wang S, Hu B, Ding Z et al. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov 2018;4:2.

DOI

94
Wang S, Yao X, Ma S et al. A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat Cell Biol 2021a;23:1314–1328.

DOI

95
Wang S, Zheng Y, Li Q et al. Deciphering primate retinal aging at single-cell resolution. Protein Cell 2021b;12:889–898.

DOI

96
Wang X, Adegoke EO, Ma M et al. Influence of Wilms’ tumor suppressor gene WT1 on bovine Sertoli cells polarity and tight junctions via non-canonical WNT signaling pathway. Theriogenology 2019;138:84–93.

DOI

97
Wang X, Cairns BR, Guo J. When spermatogenesis meets human aging and elevated body mass. Life Med 2022b;lnac022.

DOI

98
Wickham H. ggplot2: elegant graphics for data analysis. Cham: Springer, 2016.

DOI

99
Wiener-Megnazi Z, Auslender R, Dirnfeld, M. Advanced paternal age and reproductive outcome. Asian J Androl 2012;14:69–76.

DOI

100
Wong CH, Cheng CY. The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr Top Dev Biol 2005;71:263–296.

DOI

101
Yan RG, Yang QL, Yang QE. E4 Transcription Factor 1 (E4F1) regulates sertoli cell proliferation and fertility in mice. Anim Open Access J MDPI 2020;10:1691.

DOI

102
Zhang H, Li J, Ren J et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021;12:695–716.

DOI

103
Zhang L, Chen M, Wen Q et al. Reprogramming of Sertoli cells to fetal-like Leydig cells by Wt1 ablation. Proc Natl Acad Sci USA 2015;112:4003–4008.

DOI

104
Zhang S, An Q, Wang T et al. Autophagy- and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood-brain barrier permeability during early reperfusion in stroke. Neuroscience 2018;377:126–137.

DOI

105
Zhang T, Oatley J, Bardwell VJ et al. DMRT1 is required for mouse spermatogonial stem cell maintenance and replenishment. PLoS Genet 2016a;12:e1006293.

DOI

106
Zhang W, Zhang S, Yan P et al. A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 2020;11:2202.

DOI

107
Zhang Y, Zhang D, Li Q et al. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat Genet 2016b;48:1003–1013.

DOI

108
Zhang Y, Zheng Y, Wang S et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein Cell 2023;14:279–293.

DOI

109
Zhao H, Ma N, Chen Q et al. Decline in testicular function in ageing rats: changes in the unfolded protein response and mitochondrial apoptotic pathway. Exp Gerontol 2019;127:110721.

DOI

110
Zhong S, Ding W, Sun L et al. Decoding the development of the human hippocampus. Nature 2020;577:531–536.

DOI

111
Zhou Y, Zhou B, Pache L et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10:1523.

DOI

112
Zirkin BR, Tenover JL. Aging and declining testosterone: past, present, and hopes for the future. J Androl 2012;33:1111–1118.

DOI

113
Zou X, Dai X, Mentis A-FA et al. From monkey single-cell atlases into a broader biomedical perspective. Life Med 2022;lnac028.

DOI

114
Zou Z, Long X, Zhao Q et al. A single-cell transcriptomic atlas of human skin aging. Dev Cell 2021;56:383–397.e8.

DOI

Outlines

/