PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis
Received date: 18 Aug 2021
Accepted date: 30 Sep 2021
Published date: 15 Jan 2022
Copyright
In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.
Weili Yang , Xiangyu Guo , Zhuchi Tu , Xiusheng Chen , Rui Han , Yanting Liu , Sen Yan , Qi Wang , Zhifu Wang , Xianxian Zhao , Yunpeng Zhang , Xin Xiong , Huiming Yang , Peng Yin , Huida Wan , Xingxing Chen , Jifeng Guo , Xiao-Xin Yan , Lujian Liao , Shihua Li , Xiao-Jiang Li . PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis[J]. Protein & Cell, 2022 , 13(1) : 26 -46 . DOI: 10.1007/s13238-021-00888-x
1 |
AkundiRS, HuangZ, EasonJ, Pandya JD, ZhiL, CassWA, Sullivan PG, BüelerH (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 6:e16038
|
2 |
Al-RumayyanA, KleinC, AlfadhelM (2017) Early-onset parkinsonism: case report and review of the literature. Pediatr Neurol 67:102–106.e1
|
3 |
ArenaG, Valente EM (2017) PINK1 in the limelight: multiple functions of an eclectic protein in human health and disease. J Pathol 241:251–263
|
4 |
BentivoglioAR, Cortelli P, ValenteEM, IalongoT, Ferraris A, EliaA, MontagnaP (2001) Phenotypic characterisation of autosomal recessive PARK6-linked parkinsonism in three unrelated Italian families. Mov Disord 16:999–1006
|
5 |
BonifatiV, RoheCF, BreedveldGJ, Fabrizio E, De MariM, TassorelliC, Tavella A, MarconiR, NichollDJ, ChienHF et al (2005) Earlyonset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 65:87–95
|
6 |
BraakH, Müller CM, RübU, AckermannH, Bratzke H, De VosRA, Del TrediciK (2006) Pathology associated with sporadic Parkinson’s disease—where does it end. J Neural Transm Suppl 89–97
|
7 |
ChenZZ, WangJY, KangY, Yang QY, GuXY, ZhiDL, YanL, LongCZ, Shen B, NiuYY et al (2021) PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. ZoolRes 42:469–477
|
8 |
ChuCT (2019) Multiple pathways for mitophagy: a neurodegenerative conundrum for Parkinson’s disease. Neurosci Lett 697:66–71
|
9 |
ClarkIE, DodsonMW, JiangC, Cao JH, HuhJR, SeolJH, YooSJ, HayBA, Guo M (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166
|
10 |
CondorelliF, Salomoni P, CotteretS, CesiV, Srinivasula SM, AlnemriES, CalabrettaB (2001) Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol 21:3025–3036
|
11 |
CortiO, LesageS, BriceA (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91:1161–1218
|
12 |
CumminsN, GotzJ (2018) Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol Life Sci 75:1151–1162
|
13 |
DattaSR, RangerAM, LinMZ, Sturgill JF, MaYC, CowanCW, DikkesP, KorsmeyerSJ, Greenberg ME (2002) Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3:631–643
|
14 |
DaveKD, De Silva S, ShethNP, RambozS, BeckMJ, QuangC, Switzer RC III, AhmadSO, SunkinSM, WalkerD et al (2014) Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis 70:190–203
|
15 |
de HaasR, Heltzel LCMW, TaxD, van den BroekP, Steenbreker H, VerheijMM, RusselFG, OrrAL, NakamuraK, Smeitink JA et al (2019) To be or not to be pink(1): contradictory findings in an animal model for Parkinson’s disease. Brain Commun 1:fcz016
|
16 |
de VriesRLA, Przedborski S (2013) Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci 55:37–43
|
17 |
GispertS, Ricciardi F, KurzA, AzizovM, Hoepken HH, BeckerD, VoosW, LeunerK, MüllerWE, KudinAP et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4:e5777
|
18 |
GladkovaC, MaslenSL, SkehelJM, Komander D (2018) Mechanism of parkin activation by PINK1. Nature 559:410–414
|
19 |
HanH, TanJ, WangR, Wan H, HeY, YanX, GuoJ, GaoQ, LiJ, ShangS et al (2020) PINK1 phosphorylates Drp 1(S616) to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep 21:e48686
|
20 |
Ishihara-PaulL, Hulihan MM, KachergusJ, UpmanyuR, WarrenL, AmouriR, Elango R, PrinjhaRK, SotoA, KefiM et al (2008) PINK1 mutations and parkinsonism. Neurology 71:896–902
|
21 |
KitadaT, PisaniA, PorterDR, Yamaguchi H, TscherterA, MartellaG, BonsiP, ZhangC, Pothos EN, ShenJ et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446
|
22 |
KoyanoF, OkatsuK, KosakoH, Tamura Y, GoE, KimuraM, KimuraY, TsuchiyaH, Yoshihara H, HirokawaT et al (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166
|
23 |
LangstonJW (2006) The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596
|
24 |
LazarouM, SliterDA, KaneLA, Sarraf SA, WangC, BurmanJL, Sideris DP, FogelAI, YouleRJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314
|
25 |
LeeJJ, Sanchez-Martinez A, ZarateAM, BenincáC, MayorU, ClagueMJ, Whitworth AJ (2018) Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol 217:1613–1622
|
26 |
LiH, WuS, MaX, LiX, ChengT, Chen Z, WuJ, LvL, LiL, XuL et al (2021) Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 37:1271–1288
|
27 |
MarongiuR, Ferraris A, IalongoT, MichiorriS, SoletiF, FerrariF, Elia AE, GhezziD, AlbaneseA, Altavista MC et al (2008) PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum. Hum Mutat 29:565
|
28 |
MatheoudD, CannonT, VoisinA, Penttinen AM, RametL, FahmyAM, DucrotC, LaplanteA, Bourque MJ, ZhuL et al (2019) Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1(-/-) mice. Nature 571:565–569
|
29 |
McInerney-LeoA, HadleyDW, Gwinn-HardyK, HardyJ (2005) Genetic testing in Parkinson’s disease. Mov Disord 20:1–10
|
30 |
McWilliamsTG, Prescott AR, Montava-GarrigaL, BallG, SinghF, BariniE, Muqit MM, BrooksSP, GanleyIG (2018) Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab 27:439–449.e5
|
31 |
NarendraDP, JinSM, TanakaA, Suen DF, GautierCA, ShenJ, Cookson MR, YouleRJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298
|
32 |
O’FlanaganCH, O’Neill C (2014) PINK1 signalling in cancer biology. Biochim Biophys Acta 1846:590–598
|
33 |
OkatsuK, OkaT, IguchiM, Imamura K, KosakoH, TaniN, KimuraM, GoE, KoyanoF, FunayamaM et al (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3:1016
|
34 |
OrdureauA, HeoJM, DudaDM, Paulo JA, OlszewskiJL, YanishevskiD, Rinehart J, SchulmanBA, HarperJW (2015) Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci USA 112:6637–6642
|
35 |
PickrellAM, YouleRJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273
|
36 |
QiuW, ZhangH, BaoA, ZhuK, HuangY, Yan X, ZhangJ, ZhongC, ShenY, ZhouJ et al (2019) Standardized operational protocol for human brain banking in China. Neurosci Bull 35:270–276
|
37 |
ScarffeLA, Stevens DA, DawsonVL, DawsonTM (2014) Parkin and PINK1: much more than mitophagy. Trends Neurosci 37:315–332
|
38 |
TrinhJ, FarrerM (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454
|
39 |
TuZ, YangW, YanS, YinA, GaoJ, LiuX, ZhengY, Zheng J, LiZ, YangS et al (2017) Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep 7:42081
|
40 |
ValenteEM, Abou-Sleiman PM, CaputoV, MuqitMM, HarveyK, GispertS, Ali Z, Del TurcoD, BentivoglioAR, HealyDG et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160
|
41 |
VoigtA, Berlemann LA, WinklhoferKF (2016) The mitochondrial kinase PINK1: functions beyond mitophagy. J Neurochem 139 (Suppl):232–239
|
42 |
WalshTG, van den Bosch MT, LewisKE, WilliamsCM, PooleAW (2018) Loss of the mitochondrial kinase PINK1 does not alter platelet function. Sci Rep 8:14377
|
43 |
WanH, TangB, LiaoX, Zeng Q, ZhangZ, LiaoL (2018) Analysis of neuronal phosphoproteome reveals PINK1 regulation of BAD function and cell death. Cell Death Differ 25:904–917
|
44 |
WangX, CaoC, HuangJ, Yao J, HaiT, ZhengQ, WangX, ZhangH, Qin G, ChengJ (2016) One-step generation of triple genetargeted pigs using CRISPR/Cas9 system. Sci Rep 6:20620
|
45 |
WhitworthAJ, Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 44:47–53
|
46 |
XiongH, WangD, ChenL, Choo YS, MaH, TangC, XiaK, JiangW, Ronai ZE, ZhuangX et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119:650–660
|
47 |
YamanoK, YouleRJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–1769
|
48 |
YanXX, MaC, BaoAM, Wang XM, GaiWP (2015) Brain banking as a cornerstone of neuroscience in China. Lancet Neurol 14:136
|
49 |
YanS, TuZ, LiuZ, FanN, YangH, Yang S, YangW, ZhaoY, OuyangZ, LaiC et al (2018) A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington’s disease. Cell 173:989–1002.e13
|
50 |
YangW, WangG, WangCE, Guo X, YinP, GaoJ, TuZ, WangZ, Wu J, HuX et al (2015) Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 35:8345–8358
|
51 |
YangS, ChangR, YangH, Zhao T, HongY, KongHE, SunX, QinZ, JinP, LiS et al (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127:2719–2724
|
52 |
YangW, LiS, LiX-J (2019a) A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 14:17
|
53 |
YangW, LiuY, TuZ, XiaoC, YanS, MaX, GuoX, ChenX, YinP, YangZ (2019b) CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res 29:334–336
|
54 |
ZhouX, XinJ, FanN, ZouQ, HuangJ, Ouyang Z, ZhaoY, ZhaoB, LiuZ, LaiS et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184
|
/
〈 | 〉 |