[1] Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 2122258.
[2] Eswar, N., Eramian, D., Webb, B., Shen, M.Y., and Sali, A. (2008). Protein structure modeling with MODELLER. Methods Mol Biol 426, 145–159 18542861.
[3] Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 9504803.
[4] Gupta, V., Rajala, A., Rodgers, K., and Rajala, R.V. (2011). Mechanism Involved in the Modulation of Photoreceptor-Specific Cyclic Nucleotide-Gated Channel by the Tyrosine Kinase Adapter Protein Grb14. Protein Cell 2, 906–917 .
[5] Gupta, V.K., Rajala, A., Daly, R.J., and Rajala, R.V. (2010). Growth factor receptor-bound protein 14: a new modulator of photoreceptor-specific cyclic-nucleotide-gated channel. EMBO Rep 11, 861–867 20890309.
[6] Hargrave, P.A. (2001). Rhodopsin structure, function, and topography the Friedenwald lecture. Invest Ophthalmol Vis Sci 42, 3–9 11133841.
[7] Hargrave, P.A., and McDowell, J.H. (1992a). Rhodopsin and phototransduction. Int Rev Cytol 137B, 49–97 1478822.
[8] Hargrave, P.A., and McDowell, J.H. (1992b). Rhodopsin and phototransduction: a model system for G protein-linked receptors. FASEB J 6, 2323–2331 1544542.
[9] Holm, L., K??ri?inen, S., Rosenstr?m, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 18818215.
[10] Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph 14 , 33-38, 27–28 8744570.
[11] Kanan, Y., Matsumoto, H., Song, H., Sokolov, M., Anderson, R.E., and Rajala, R.V. (2010). Serine/threonine kinase akt activation regulates the activity of retinal serine/threonine phosphatases, PHLPP and PHLPPL. J Neurochem 113, 477–488 20089132.
[12] Kannan, N., Wu, J., Anand, G.S., Yooseph, S., Neuwald, A.F., Venter, J.C., and Taylor, S.S. (2007). Evolution of allostery in the cyclic nucleotide binding module. Genome Biol 8, R26418076763.
[13] Karnoub, A.E., and Weinberg, R.A. (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9, 517–531 18568040.
[14] Kaupp, U.B., and Seifert, R. (2002). Cyclic nucleotide-gated ion channels. Physiol Rev 82, 769–824 12087135.
[15] Kyriakis, J.M. (2009). Thinking outside the box about Ras. J Biol Chem 284, 10993–10994 19091742.
[16] Li, G., Anderson, R.E., Tomita, H., Adler, R., Liu, X., Zack, D.J., and Rajala, R.V. (2007). Nonredundant role of Akt2 for neuroprotection of rod photoreceptor cells from light-induced cell death. J Neurosci 27, 203–211 17202487.
[17] Liang, Z., Mather, T., and Li, G. (2000). GTPase mechanism and function: new insights from systematic mutational analysis of the phosphate-binding loop residue Ala30 of Rab5. Biochem J 346, 501–508 10677372.
[18] Magee, T., and Marshall, C. (1999). New insights into the interaction of Ras with the plasma membrane. Cell 98, 9–12 10412976.
[19] McCormick, F., and Wittinghofer, A. (1996). Interactions between Ras proteins and their effectors. Curr Opin Biotechnol 7, 449–456 8768906.
[20] McKay, D.B., and Steitz, T.A. (1981). Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature 290, 744–749 6261152.
[21] Morris, A.L., MacArthur, M.W., Hutchinson, E.G., and Thornton, J.M. (1992). Stereochemical quality of protein structure coordinates. Proteins 12, 345–364 1579569.
[22] Papermaster, D.S. (1982). Preparation of retinal rod outer segments. Methods Enzymol 81, 48–52 6212746.
[23] Ponting, C.P., and Benjamin, D.R. (1996). A novel family of Ras-binding domains. Trends Biochem Sci 21, 422–425 8987396.
[24] Raaijmakers, J.H., and Bos, J.L. (2009). Specificity in Ras and Rap signaling. J Biol Chem 284, 10995–10999 19091745.
[25] Rajala, A., Daly, R.J., Tanito, M., Allen, D.T., Holt, L.J., Lobanova, E.S., Arshavsky, V.Y., and Rajala, R.V. (2009). Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry 48, 5563–5572 19438210.
[26] Rajala, R.V., McClellan, M.E., Ash, J.D., and Anderson, R.E. (2002). In vivo regulation of phosphoinositide 3-kinase in retina through light-induced tyrosine phosphorylation of the insulin receptor beta-subunit. J Biol Chem 277, 43319–43326 12213821.
[27] Smith, H.G. Jr, and Litman, B.J. (1982). Preparation of osmotically intact rod outer segment disks by Ficoll flotation. Methods Enzymol 81, 57–61 7047994.
[28] Symons, M., and Takai, Y. (2001). Ras GTPases: singing in tune. Sci STKE 2001 , E1.
[29] van der Weyden, L., and Adams, D.J. (2007). The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta 1776, 58–85 17692468.
[30] Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. J Mol Graph 8 , 52-56, 29.
[31] Weber, I.T., Takio, K., Titani, K., and Steitz, T.A. (1982). The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and the catabolite gene activator protein are homologous. Proc Natl Acad Sci U S A 79, 7679–7683 6296845.
[32] Wigler, M., Pellicer, A., Silverstein, S., and Axel, R. (1978). Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell 14, 725–731 210957.