RESEARCH ARTICLE

LIN28 coordinately promotes nucleolar/ ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells

  • Zhen Sun 1 ,
  • Hua Yu 1 ,
  • Jing Zhao 1 ,
  • Tianyu Tan 1 ,
  • Hongru Pan 1 ,
  • Yuqing Zhu 1 ,
  • Lang Chen 1 ,
  • Cheng Zhang 2 ,
  • Li Zhang 1 ,
  • Anhua Lei 1 ,
  • Yuyan Xu 1 ,
  • Xianju Bi 3 ,
  • Xin Huang 4 ,
  • Bo Gao 5 ,
  • Longfei Wang 6,7 ,
  • Cristina Correia 2 ,
  • Ming Chen 8 ,
  • Qiming Sun 9 ,
  • Yu Feng 5 ,
  • Li Shen 10 ,
  • Hao Wu 6 ,
  • Jianlong Wang 4 ,
  • Xiaohua Shen 3 ,
  • George Q. Daley 7 ,
  • Hu Li 2 ,
  • Jin Zhang , 1,11,12
Expand
  • 1. Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences and the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
  • 2. Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
  • 3. Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100085, China
  • 4. The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
  • 5. Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
  • 6. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
  • 7. Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children’s Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
  • 8. College of Life Sciences, Zhejiang University, Hangzhou 310058, China
  • 9. Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
  • 10. Institute of Life Science, Zhejiang University, Hangzhou 310058, China
  • 11. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
  • 12. Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou 310058, China

Received date: 22 May 2021

Accepted date: 15 Jun 2021

Published date: 15 Jul 2022

Copyright

2021 The Author(s)

Abstract

LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28’s role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.

Cite this article

Zhen Sun , Hua Yu , Jing Zhao , Tianyu Tan , Hongru Pan , Yuqing Zhu , Lang Chen , Cheng Zhang , Li Zhang , Anhua Lei , Yuyan Xu , Xianju Bi , Xin Huang , Bo Gao , Longfei Wang , Cristina Correia , Ming Chen , Qiming Sun , Yu Feng , Li Shen , Hao Wu , Jianlong Wang , Xiaohua Shen , George Q. Daley , Hu Li , Jin Zhang . LIN28 coordinately promotes nucleolar/ ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells[J]. Protein & Cell, 2022 , 13(7) : 490 -512 . DOI: 10.1007/s13238-021-00864-5

1
Baker CL, Pera MF (2018) Capturing totipotent stem cells . Cell Stem Cell 22:25–34

DOI

2
Biggiogera M, Burki K, Kaufmann SH, Shaper JH, Gas N, Amalric F, Fakan S(1990) Nucleolar distribution of proteins B23 and nucleolin in mouse preimplantation embryos as visualized by immunoelectron microscopy . Development 110:1263–1270

DOI

3
Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H(2015) Profiling of ribose methylations in RNA by high-throughput sequencing . Angew Chem Int Ed Engl 54:451–455

DOI

4
Bolger AM, Marc L, Bjoern U(2014) Trimmomatic: a flexible trimmer for Illumina sequence data . Bioinformatics 30:2114–2120

DOI

5
Borsos M, Torres-Padilla ME(2016) Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development . Genes Dev 30:611–621

DOI

6
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI(2010) The nucleolus under stress . Mol Cell 40:216–227

DOI

7
Cabili MN, Cole T, Loyal G, Magdalena K, Barbara TV, Aviv R, Rinn JL(2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses . Genes Dev 25:1915

DOI

8
Chen Z, Zhang Y(2019) Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development . Nat Genet 51:947–951

DOI

9
Chen C, Liu W, Guo J, Liu Y, Liu X, Liu J, Dou X, Le R, Huang Y, Li C (2021) Nuclear m(6)A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos . Protein Cell 12:455–474

DOI

10
Cho J, Chang H, Kwon SC, Kim B, Kim Y, Choe J, Ha M, Kim YK, Kim VN(2012) LIN28A is a suppressor of ER-associated translation in embryonic stem cells . Cell 151:765–777

DOI

11
Daehwan K, Ben L, Salzberg SL(2015) HISAT: a fast spliced aligner with low memory requirements . Nat Methods 12:357–360

DOI

12
Dai MS, Lu H(2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5 . J Biol Chem 279:44475–44482

DOI

13
Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H(2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition . Mol Cell Biol 24:7654–7668

DOI

14
De Iaco A, Planet E, Coluccio A, Verp S, Duc J, Trono D(2017) DUX-family transcription factors regulate zygotic genome activation in placental mammals . Nat Genet 49:941–945

DOI

15
Deng Q, Ramskold D, Reinius B, Sandberg R(2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells . Science 343:193–196

DOI

16
Eckersley-Maslin MA, Svensson V, Krueger C, Stubbs TM, Giehr P, Krueger F, Miragaia RJ, Kyriakopoulos C, Berrens RV, Milagre I (2016) MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs . Cell Rep 17:179–192

DOI

17
Falahati H, Pelham-Webb B, Blythe S, Wieschaus E(2016) Nucleation by rRNA dictates the precision of nucleolus assembly . Curr Biol 26:277–285

DOI

18
Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP(2016) Coexisting liquid phases underlie nucleolar subcompartments . Cell 165:1686–1697

DOI

19
Friedli M, Turelli P, Kapopoulou A, Rauwel B, Castro-Diaz N, Rowe HM, Ecco G, Unzu C, Planet E, Lombardo A (2014) Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency . Genome Res 24:1251–1259

DOI

20
Fulka H, Aoki F(2016) Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries . Biol Reprod 94:143

DOI

21
Ginisty H, Amalric F, Bouvet P(1998) Nucleolin functions in the first step of ribosomal RNA processing . EMBO J 17:1476–1486

DOI

22
Golomb L, Volarevic S, Oren M(2014) p53 and ribosome biogenesis stress: the essentials . FEBS Lett 588:2571–2579

DOI

23
Guallar D, Bi X, Pardavila JA, Huang X, Saenz C, Shi X, Zhou H, Faiola F, Ding J, Haruehanroengra P (2018) RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells . Nat Genet 50:443–451

DOI

24
Guetg C, Santoro R(2012) Formation of nuclear heterochromatin: the nucleolar point of view . Epigenetics 7:811–814

DOI

25
Guo M, Zhang Y, Zhou J, Bi Y, Xu J, Xu C, Kou X, Zhao Y, Li Y, Tu Z (2019) Precise temporal regulation of Dux is important for embryo development . Cell Res 29:956–959

DOI

26
Hendrickson PG, Dorais JA, Grow EJ, Whiddon JL, Lim JW, Wike CL, Weaver BD, Pflueger C, Emery BR, Wilcox AL (2017)Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons . Nat Genet 49:925–934

DOI

27
Heo I, Joo C, Kim Y-K, Ha M, Yoon M-J, Cho J, Yeom K-H, Han J, Kim VN(2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation . Cell 138:696–708

DOI

28
Hung SS, Wong RC, Sharov AA, Nakatake Y, Yu H, Ko MS(2013) Repression of global protein synthesis by Eif1a-like genes that are expressed specifically in the two-cell embryos and the transient Zscan4-positive state of embryonic stem cells . DNA Res 20:391–402

DOI

29
Ishiuchi T, Enriquez-Gasca R, Mizutani E, Boskovic A, Ziegler-Birling C, Rodriguez-Terrones D, Wakayama T, Vaquerizas JM, Torres-Padilla ME(2015) Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly . Nat Struct Mol Biol 22:662–671

DOI

30
Jia W, Yao Z, Zhao J, Guan Q, Gao L(2017) New perspectives of physiological and pathological functions of nucleolin (NCL) . Life Sci 186:1–10

DOI

31
Jukam D, Shariati SAM, Skotheim JM(2017) Zygotic genome activation in vertebrates . Dev Cell 42:316–332

DOI

32
Kim SK, Lee H, Han K, Kim SC, Choi Y, Park SW, Bak G, Lee Y, Choi JK, Kim TK (2014) SET7/9 methylation of the pluripotency factor LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human ESCs . Cell Stem Cell 15:735–749

DOI

33
Kiss T(2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions . Cell 109:145–148

DOI

34
Langdon EM, Gladfelter AS(2018) A new lens for RNA localization: liquid-liquid phase separation . Annu Rev Microbiol 72:255–271

DOI

35
Li M, He Y, Dubois W, Wu X, Shi J, Huang J(2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells . Mol Cell 46:30–42

DOI

36
Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH(2003) Regulation of HDM2 activity by the ribosomal protein L11 . Cancer Cell 3:577–587

DOI

37
Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity . Nature 487:57–63

DOI

38
Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM, Lorincz MC(2013) Distinct roles of KAP1, HP1 and G9a/ GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells . Epigen Chromatin 6:15

DOI

39
Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y(2016) Illuminabased RiboMethSeq approach for mapping of 2’-O-Me residues in RNA . Nucleic Acids Res 44:

DOI

40
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y(2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET . Nature 464:927–931

DOI

41
Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB(2012) Trim28 is required for epigenetic stability during mouse oocyte to embryo transition . Science 335:1499–1502

DOI

42
Mihaela P, Pertea GM, Antonescu CM, Tsung-Cheng C, Mendell JT, Salzberg SL(2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads . Nat Biotechnol 33:290–295

DOI

43
Mongelard F, Bouvet P(2007) Nucleolin: a multiFACeTed protein . Trends Cell Biol 17:80–86

DOI

44
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P(2011) Molecular basis for interaction of let-7 microRNAs with Lin28 . Cell 147:1080–1091

DOI

45
Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB(2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos . Dev Cell 7:597–606

DOI

46
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M (2018) A LINE1-nucleolin partnership regulates early development and ESC identity . Cell 174(391–405):

DOI

47
Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R(2014) Full-length RNA-seq from single cells using Smart-seq2 . Nat Protoc 9:171–181

DOI

48
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI(2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms . Cell 147:1066–1079

DOI

49
Rodriguez-Terrones D, Torres-Padilla ME(2018) Nimble and ready to mingle: transposon outbursts of early development . Trends Genet 34:806–820

DOI

50
Rubbi CP, Milner J(2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses . EMBO J 22:6068–6077

DOI

51
Shinoda G, Shyh-Chang N, Soysa TYD, Zhu H, Seligson MT, Shah SP, Abo-Sido N, Yabuuchi A, Hagan JP, Gregory RI (2013) Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism . Stem Cells 31:1563–1573

DOI

52
Shyh-Chang N, Daley GQ(2013) Lin28: primal regulator of growth and metabolism in stem cells . Cell Stem Cell 12:395–406

DOI

53
Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC(1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly . Cell 72:443–457

DOI

54
Viswanathan SR, Daley GQ(2010) Lin28: a microRNA regulator with a macro role . Cell 140:445–449

DOI

55
Viswanathan SR, Daley GQ, Gregory RI(2008) Selective blockade of microRNA processing by Lin28 . Science 320:97–100

DOI

56
Walter M, Teissandier A, Perez-Palacios R, Bourc’his D(2016) An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells . Elife 5

DOI

57
Wang C, Liu X, Gao Y, Yang L, Li C, Liu W, Chen C, Kou X, Zhao Y, Chen J (2018) Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development . Nat Cell Biol 20:620–631

DOI

58
Whiddon JL, Langford AT, Wong CJ, Zhong JW, Tapscott SJ(2017) Conservation and innovation in the DUX4-family gene network . Nat Genet 49:935–940

DOI

59
Wilbert ML, Huelga SC, Kapeli K, Stark TJ, Liang TY, Chen SX, Yan BY, Nathanson JL, Hutt KR, Lovci MT (2012) LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance . Mol Cell 48:195–206

DOI

60
Xu B, Zhang K, Huang Y(2009) Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells . RNA 15:357–361

DOI

61
Yang BX, El Farran CA, Guo HC, Yu T, Fang HT, Wang HF, Schlesinger S, Seah YF, Goh GY, Neo SP (2015) Systematic identification of factors for provirus silencing in embryonic stem cells . Cell 163:230–245

DOI

62
Yang K, Wang M, Zhao Y, Sun X, Yang Y, Li X, Zhou A, Chu H, Zhou H, Xu J (2016) A redox mechanism underlying nucleolar stress sensing by nucleophosmin . Nat Commun 7:13599

DOI

63
Yang K, Yang J, Yi J(2018) Nucleolar stress: hallmarks, sensing mechanism and diseases . Cell Stress 2:125–140

DOI

64
Yang F, Huang X, Zang R, Chen J, Fidalgo M, Sanchez-Priego C, Yang J, Caichen A, Ma F, Macfarlan T (2020) DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs induces a totipotent 2C-like state . Cell Stem Cell 26:234–250.e237

DOI

65
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells . Science 318:1917–1920

DOI

66
Zeng Y, Yao B, Shin J, Lin L, Kim N, Song Q, Liu S, Su Y, Guo JU, Huang L (2016) Lin28A binds active promoters and recruits Tet1 to regulate gene expression . Mol Cell 61:153–160

DOI

67
Zhang Y, Lu H(2009) Signaling to p53: ribosomal proteins find their way . Cancer Cell 16:369–377

DOI

68
Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M (2016) LIN28 regulates stem cell metabolism and conversion to primed pluripotency . Cell Stem Cell 19:66–80

DOI

69
Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L(2016) Single-cell barcoding and sequencing using droplet microfluidics . Nat Protoc 12:44–73

DOI

Outlines

/