The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics
Received date: 06 May 2021
Accepted date: 08 Jul 2021
Published date: 15 Sep 2022
Copyright
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30–1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Abhimanyu Thakur , Xiaoshan Ke , Ya-Wen Chen , Pedram Motallebnejad , Kui Zhang , Qizhou Lian , Huanhuan Joyce Chen . The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics[J]. Protein & Cell, 2022 , 13(9) : 631 -654 . DOI: 10.1007/s13238-021-00863-6
1 |
Alberti C, Cochella L(2017) A framework for understanding the roles of miRNAs in animal development. Development 144:2548–2559
|
2 |
Aliotta JM, Pereira M, Johnson KW
|
3 |
Anderson RL, Balasas T, Callaghan J
|
4 |
André F, Chaput N, Schartz NEC
|
5 |
Arslan F, Lai RC, Smeets MB
|
6 |
Aryani A, Denecke B(2016) Exosomes as a Nanodelivery system: a key to the future of neuromedicine? Mol Neurobiol 53:818–834
|
7 |
Asea A, Jean-Pierre C, Kaur P
|
8 |
Baquir B, Hancock REW(2017) Exosomes, your body’s answer to immune health. Ann Transl Med 5:81–81
|
9 |
Baskar R, Lee KA, Yeo R, Yeoh K-W(2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199
|
10 |
Basu B, Ghosh MK(2019) Extracellular vesicles in glioma: from diagnosis to therapy. BioEssays 41:1800245
|
11 |
Battaglia R, Palini S, Vento ME
|
12 |
Becker JC(2014) Tumor-educated myeloid cells: impact the microand macroenvironment. Exp Dermatol 23:157–158
|
13 |
Beer KB, Wehman AM(2017) Mechanisms and functions of extracellular vesicle release in vivo—what we can learn from flies and worms. Cell Adh Migr 11:135–150
|
14 |
Bellavia D, Raimondi L, Costa V
|
15 |
Benedikter BJ, Bouwman FG, Vajen T
|
16 |
Bernard V, Ling J, Maitra A(2018) Heterogeneity of tumor exosomes –role in precision medicine. In: Diagnostic and therapeutic applications of exosomes in cancer. Elsevier, Amsterdam,pp 59–67
|
17 |
Bier E, De Robertis EM(2015) BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science 348: aaa5838–aaa5838
|
18 |
Böing AN, van der Pol E, Grootemaat AE
|
19 |
Booth AM, Fang Y, Fallon JK
|
20 |
Boriachek K, Islam MN, Gopalan V
|
21 |
Budnik V, Ruiz-Cañada C, Wendler F(2016) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17:160–172
|
22 |
Bunggulawa EJ, Wang W, Yin T
|
23 |
Camussi G, Deregibus MC, Bruno S
|
24 |
Cao M, Ning J, Hernandez-Lara CI
|
25 |
Cappello V, Marchetti L, Parlanti P
|
26 |
Carmicheal J, Hayashi C, Huang X
|
27 |
Chaffer CL, Weinberg RA(2011) A perspective on cancer cell metastasis. Science 331:1559–1564
|
28 |
Chalmin F, Ladoire S, Mignot G
|
29 |
Chang JC(2016) Cancer stem cells. Medicine (baltimore) 95:S20–S25
|
30 |
Chen I-H, Xue L, Hsu C-C
|
31 |
Chen Z, Li Y, Yu H,
|
32 |
Chernyshev VS, Rachamadugu R, Tseng YH
|
33 |
Cho S, Jo W, Heo Y
|
34 |
Choi H, Mun JY(2017) Structural analysis of exosomes using different types of electron microscopy. Appl Microsc 47:171–175
|
35 |
Colombo M, Raposo G, Théry C(2014) Biogenesis, secretion, and iIntercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289
|
36 |
Conde-Vancells J, Rodriguez-Suarez E, Embade N
|
37 |
Contreras-Naranjo JC, Wu H-J, Ugaz VM(2017) Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17:3558–3577
|
38 |
Corrado C, Raimondo S, Chiesi A
|
39 |
Corrigan L, Redhai S, Leiblich A
|
40 |
Costa-Silva B, Aiello NM, Ocean AJ
|
41 |
Cruz L, Arevalo Romero JA, Brandão Prado M
|
42 |
Cruz L, Romero JAA, Iglesia RP, Lopes MH(2018b) Extracellular vesicles: decoding a new language for cellular communication in early embryonic development. Front Cell Dev Biol.
|
43 |
Danilchik M, Williams M, Brown E(2013) Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: Potential roles in morphogen distribution and detection. Dev Biol 382:70–81
|
44 |
Davies RT, Kim J, Jang SC
|
45 |
de la Gomez C T, Goreham RV, Bech Serra JJ
|
46 |
de Menezes-Neto A, Sáez MJF, Lozano-Ramos I
|
47 |
De Toro J, Herschlik L, Waldner C, Mongini C(2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol.
|
48 |
Deng T, Zhang H, Yang H
|
49 |
Deregibus MC, Cantaluppi V, Calogero R
|
50 |
Desrochers LM, Bordeleau F, Reinhart-King CA
|
51 |
Dignat-George F, Boulanger CM(2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31:27–33
|
52 |
Dimov N, Kastner E, Hussain M
|
53 |
Draening T, Heigwer J, Juergensen L
|
54 |
Dudani JS, Gossett DR, Tse HTK
|
55 |
Fairchild CL, Barna M(2014) Specialized filopodia: at the ‘tip’ of morphogen transport and vertebrate tissue patterning. Curr Opin Genet Dev 27:67–73
|
56 |
Fang S, Tian H, Li X
|
57 |
Filipe V, Hawe A, Jiskoot W(2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810
|
58 |
Fröhlich D, Kuo WP, Frühbeis C
|
59 |
Frühbeis C, Fröhlich D, Kuo WP
|
60 |
Gallagher S, Winston SE, Fuller SA, Hurrell JGR(2008) Immunoblotting and immunodetection. Curr Protoc Mol Biol.
|
61 |
Gatti J-L, Métayer S, Belghazi M
|
62 |
Goreham RV, Ayed Z, Amin ZM, Dobhal G(2020) The future of quantum dot fluorescent labelling of extracellular vesicles for biomedical applications. Nano Futur 4:022001
|
63 |
Gradilla A-C, González E, Seijo I
|
64 |
Greco V, Hannus M, Eaton S(2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645
|
65 |
Gross JC, Chaudhary V, Bartscherer K, Boutros M(2012) Active Wnt proteins are secreted on exosomes. Nat Cell Biol 14:1036–1045
|
66 |
Gross N, Kropp J, Khatib H(2017) MicroRNA signaling in embryo development. Biology (basel) 6:34
|
67 |
Gualerzi A, Kooijmans SAA, Niada S
|
68 |
Gupta S, Knowlton AA(2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Circ Physiol 292:H3052–H3056
|
69 |
György B, Sage C, Indzhykulian AA
|
70 |
Ha D, Yang N, Nadithe V(2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296
|
71 |
Hardij J, Cecchet F, Berquand A
|
72 |
Harding C, Heuser J, Stahl P(1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35:256–263
|
73 |
He L, Zhu W, Chen Q
|
74 |
He M, Crow J, Roth M
|
75 |
Heckman CA, Plummer HK(2013) Filopodia as sensors. Cell Signal 25:2298–2311
|
76 |
Hosseinkhani B, van den Akker N, D’Haen J
|
77 |
Hsu H-J, Bahader M, Lai C-M(2019) Molecular control of the female germline stem cell niche size in Drosophila. Cell Mol Life Sci 76:4309–4317
|
78 |
Huang H, Wang C, Liu F
|
79 |
Hur YH, Cerione RA, Antonyak MA(2020) Extracellular vesicles and their roles in stem cell biology. Stem Cells 38:469–476
|
80 |
Ibrahim AG-E, Cheng K, Marbán E(2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2:606–619
|
81 |
Im H, Shao H, Il PY
|
82 |
Im H, Yang K, Lee H, Castro CM(2017) Characterization of extracellular vesicles by surface plasmon resonance. pp 133–141
|
83 |
Jeong S, Park J, Pathania D
|
84 |
Jiang D, Gao F, Zhang Y
|
85 |
Jiang D, Xiong G, Feng H
|
86 |
Jiang X-C, Gao J-Q(2017) Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521:167–175
|
87 |
Johnstone RM, Adam M, Hammond JR
|
88 |
Jones DL, Wagers AJ(2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21
|
89 |
Jung YJ, Kim HK, Cho Y,
|
90 |
Kalluri R, LeBleu VS(2020) The biology, function , and biomedical applications of exosomes. Science 367:eaau6977
|
91 |
Kamerkar S, LeBleu VS, Sugimoto H
|
92 |
Kanellopoulou C, Gilpatrick T, Kilaru G
|
93 |
Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S(2014) Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14:1891–1900
|
94 |
Kao Y-C, Ho P-C, Tu Y-K
|
95 |
Kato S, Goodman A, Walavalkar V
|
96 |
Kawakami K, Fujita Y, Matsuda Y
|
97 |
Khan M, Nickoloff E, Abramova T
|
98 |
Khawar MB, Abbasi MH, Siddique Z
|
99 |
Kim MS, Haney MJ, Zhao Y
|
100 |
Kirkeby A, Perlmann T, Pereira C-F(2016) The stem cell niche finds its true north. Development 143:2877–2881
|
101 |
Klinov D, Magonov S(2004) True molecular resolution in tappingmode atomic force microscopy with high-resolution probes. Appl Phys Lett 84:2697–2699
|
102 |
Ko J, Carpenter E, Issadore D(2016) Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst 141:450–460
|
103 |
Ko SY, Lee W, Kenny HA
|
104 |
Koles K, Nunnari J, Korkut C
|
105 |
Koritzinsky EH, Street JM, Star RA, Yuen PST(2017) Quantification of exosomes. J Cell Physiol 232:1587–1590
|
106 |
Korkut C, Ataman B, Ramachandran P
|
107 |
Kwizera EA, O’Connor R, Vinduska V
|
108 |
Lane RE, Korbie D, Hill MM, Trau M(2018) Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med 7:14
|
109 |
Le Borgne R, Schweisguth F(2003) Notch signaling: endocytosis makes delta signal better. Curr Biol 13:R273–R275
|
110 |
Lee K, Shao H, Weissleder R, Lee H(2015) Acoustic purification of extracellular microvesicles. ACS Nano 9:2321–2327
|
111 |
Li J, Chen Y, Guo X
|
112 |
Li J, Sherman-Baust CA, Tsai-Turton M
|
113 |
Li L, Xie T(2005) STEM CELL NICHE: structure and function. Annu Rev Cell Dev Biol 21:605–631
|
114 |
Liang K, Liu F, Fan J
|
115 |
Liang L-G, Kong M-Q, Zhou S
|
116 |
Liégeois S, Benedetto A, Garnier J-M
|
117 |
Liu C, Zhao J, Tian F
|
118 |
Liu F, Vermesh O, Mani V
|
119 |
Liu R, Wang X, Curtiss C
|
120 |
Liu X, Li Q, Niu X
|
121 |
Logozzi M, Angelini DF, Iessi E
|
122 |
Loh KM, van Amerongen R, Nusse R(2016) Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev Cell 38:643–655
|
123 |
Lozano-Ramos I, Bancu I, Oliveira-Tercero A
|
124 |
Luan X, Sansanaphongpricha K, Myers I
|
125 |
Ludwig N, Whiteside TL, Reichert TE(2019) Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 20:4684
|
126 |
Das S(2014) Extracellular vesicles in heart disease: excitement for the future? Exosomes Microvesicle.
|
127 |
Ma C, Jiang F, Ma Y
|
128 |
Ma X, Yu H(2006) Global burden of cancer. Yale J Biol Med 79:85–94
|
129 |
Maas SLN, De Vrij J, Broekman MLD(2014) Quantification and sizeprofiling of extracellular vesicles using tunable resistive pulse sensing. J vis Exp.
|
130 |
Maguire JE, Silva M, Nguyen KCQ
|
131 |
Maia J, Caja S, Strano Moraes MC
|
132 |
Mao Y, Wang Y, Dong L
|
133 |
Martin TA, Ye L, Sanders AJ
|
134 |
Mašek J, Andersson ER(2017) The developmental biology of genetic Notch disorders. Development 144:1743–1763
|
135 |
Masyuk AI, Huang BQ, Ward CJ
|
136 |
Matusek T, Wendler F, Polès S
|
137 |
McMahon AP, Hasso SM(2013) Filopodia: the cellular quills of Hedgehog signaling? Dev Cell 25:328–330
|
138 |
Melo SA, Luecke LB, Kahlert C
|
139 |
Menck K, Scharf C, Bleckmann A
|
140 |
Merchant ML, Rood IM, Deegens JKJ, Klein JB(2017) Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 13:731–749
|
141 |
Minciacchi VR, Spinelli C, Reis-Sobreiro M
|
142 |
Momen-Heravi F(2017) Isolation of extracellular vesicles by ultracentrifugation. In: Methods in Molecular Biology. pp 25–32
|
143 |
Nakase I, Futaki S(2015) Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep 5:10112
|
144 |
Noble JM, Roberts LM, Vidavsky N
|
145 |
Ohlstein B, Kai T, Decotto E, Spradling A(2004) The stem cell niche: theme and variations. Curr Opin Cell Biol 16:693–699
|
146 |
Osteikoetxea X, Sódar B, Németh A
|
147 |
Oszvald Á, Szvicsek Z, Sándor GO
|
148 |
Othman N, Jamal R, Abu N(2019) Cancer-derived exosomes as effectors of key inflammation-related players. Front Immunol.
|
149 |
Palmieri V, Lucchetti D, Gatto I
|
150 |
Pan BT, Teng K, Wu C
|
151 |
Panáková D, Sprong H, Marois E
|
152 |
Pang B, Zhu Y, Ni J
|
153 |
Paolini L, Zendrini A, Radeghieri A(2018) Biophysical properties of extracellular vesicles in diagnostics. Biomark Med 12:383–391
|
154 |
Peinado H, Alečković M, Lavotshkin S
|
155 |
Peinado H, Zhang H, Matei IR
|
156 |
Peng Y, Baulier E, Ke Y
|
157 |
Pennings S, Liu KJ, Qian H(2018) The stem cell niche: interactions between stem cells and their environment. Stem Cells Int 2018:1–3
|
158 |
Plusa B, Hadjantonakis A-K(2014) Embryonic stem cell identity grounded in the embryo. Nat Cell Biol 16:502–504
|
159 |
Quesenberry PJ, Dooner MS, Aliotta JM(2010) Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp Hematol 38:581–592
|
160 |
Raposo G, Nijman HW, Stoorvogel W
|
161 |
Ratajczak J, Miekus K, Kucia M
|
162 |
Ringborg U, Bergqvist D, Brorsson B
|
163 |
Ronquist G, Brody I(1985) The prostasome: its secretion and function in man. Biochim Biophys Act 822:203–218
|
164 |
Rosa-Fernandes L, Rocha VB, Carregari VC
|
165 |
Rozenblum P, Radrizzani
|
166 |
Russell JC, Postupna N, Golubeva A
|
167 |
Saenz-Antoñanzas A-I
|
168 |
Safdar A, Saleem A, Tarnopolsky MA(2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12:504–517
|
169 |
Sagar PF, Wiegreffe C, Scaal M(2015) Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 142:665–671
|
170 |
Salas-Vidal E, Lomeli H(2004) Imaging filopodia dynamics in the mouse blastocyst. Dev Biol 265:75–89
|
171 |
Salomon C, Kobayashi M, Tapia J
|
172 |
Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R
|
173 |
Sato YT, Umezaki K, Sawada S
|
174 |
Savina A, Furlán M, Vidal M, Colombo MI(2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083–20090
|
175 |
Segura E, Nicco C, Lombard B
|
176 |
Sharma S, Das K, Woo J, Gimzewski JK(2014) Nanofilaments on glioblastoma exosomes revealed by peak force microscopy. J R Soc Interface 11:20131150
|
177 |
Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK(2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27:14394–14400
|
178 |
Sharma S, LeClaire M, Gimzewski JK(2018) Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. Nanotechnology 29:132001
|
179 |
Sharma S, Rasool HI, Palanisamy V
|
180 |
Sharma S, Zuñiga F, Rice GE
|
181 |
Sheldon H, Heikamp E, Turley H
|
182 |
Simons M, Raposo G(2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581
|
183 |
Song M, Han L, Chen F
|
184 |
Soo CY, Song Y, Zheng Y
|
185 |
Soung Y, Ford S, Zhang V, Chung J(2017) Exosomes in cancer diagnostics. Cancers (basel) 9:8
|
186 |
Stahl PD, Raposo G (2018) Exosomes and extracellular vesicles: the path forward. Essays Biochem 62:119–124
|
187 |
Steeg PS(2016) Targeting metastasis. Nat Rev Cancer 16:201–218
|
188 |
Stronati E, Conti R, Cacci E
|
189 |
Subra C, Grand D, Laulagnier K
|
190 |
Sun L, Xu R, Sun X
|
191 |
Sun Z, Shi K, Yang S
|
192 |
Sverdlov ED(2012) Amedeo Avogadro’s cry: what is 1 μg of exosomes? BioEssays 34:873–875
|
193 |
Szatanek R, Baj-Krzyworzeka M, Zimoch J
|
194 |
Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M(2015) Isolation of extracellular vesicles: determining the correct approach (Review). Int J Mol Med 36:11–17
|
195 |
Tai Y-L, Chu P-Y, Lee B-H
|
196 |
Takov K, Yellon DM, Davidson SM(2017) Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles 6:1388731
|
197 |
Tanaka Y, Okada Y, Hirokawa N(2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435:172–177
|
198 |
Teng X, Chen L, Chen W
|
199 |
Thakur A(2019) The Study of Glioma-derived Exosomes as Biomarkers and Functional Mediators via MCT1, CD147, and CD44. City University of Hong Kong
|
200 |
Thakur A, Mishra AP, Panda B
|
201 |
Thakur A, Mishra AP, Panda B, Majhi B(2020b) Application of artificial intelligence in pharmaceutical and biomedical studies. Curr Pharm Des.
|
202 |
Thakur A, Qiu G
|
203 |
Thakur A, Qiu G, Xu C,
|
204 |
Thakur A, Sidu RK, Zou H
|
205 |
Thakur A, Zou H, Yang M, Lee Y(2018) Abstract 3720: Augmented loading efficiency of doxorubicin into glioma-derived exosomes by an integrated microfluidic device. In: Cancer Chemistry. American Association for Cancer Research, pp 3720–3720
|
206 |
Théry C, Amigorena S, Raposo G, Clayton A(2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 30:3.22.1–3.22.29
|
207 |
Théry C, Boussac M, Véron P
|
208 |
Théry C, Ostrowski M, Segura E(2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593
|
209 |
Théry C, Regnault A, Garin J
|
210 |
Tian T, Zhang H-X, He C-P
|
211 |
Tian W, Liu S, Li B(2019) Potential role of exosomes in cancer metastasis. Biomed Res Int 2019:1–12
|
212 |
Tonini T, Rossi F, Claudio PP(2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556
|
213 |
Torregrosa Paredes P, Esser J, Admyre C
|
214 |
Tran C, Damaser MS(2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82–83:1–11
|
215 |
Vaidyanathan R, Naghibosadat M, Rauf S
|
216 |
Vakhshiteh F, Atyabi F, Ostad SN(2019) Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine 14:2847–2859
|
217 |
Val S, Jeong S, Poley M
|
218 |
van der Meel R, Fens MHAM, Vader P
|
219 |
van der Pol E, Coumans FAW, Grootemaat AE
|
220 |
Vasan N, Baselga J, Hyman DM(2019) A view on drug resistance in cancer. Nature 575:299–309
|
221 |
Viaud S, Terme M, Flament C
|
222 |
Waldenström A, Gennebäck N, Hellman U, Ronquist G(2012) Cardiomyocyte Microvesicles Contain DNA/RNA and Convey Biological Messages to Target Cells. PLoS ONE 7:e34653
|
223 |
Wang J, Silva M, Haas LA
|
224 |
Wang L, Hu L, Zhou X
|
225 |
Wang RN, Green J, Wang Z
|
226 |
Wang Z, Wu H, Fine D
|
227 |
Wehman AM, Poggioli C, Schweinsberg P
|
228 |
Whitehead CA, Luwor RB, Morokoff AP
|
229 |
Wiklander OPB, Brennan MÁ, Lötvall J
|
230 |
Witwer KW, Buzás EI, Bemis LT
|
231 |
Woo H-K, Sunkara V, Park J
|
232 |
Wood CR, Rosenbaum JL(2015) Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol 25:276–285
|
233 |
Wu J, Qu Z, Fei Z-W
|
234 |
Wu Y, Deng W, Klinke DJII (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140:6631–6642
|
235 |
Wunsch BH, Smith JT, Gifford SM
|
236 |
Xia Y, Liu M, Wang L
|
237 |
Xu R, Greening DW, Zhu H-J
|
238 |
Yamashita T, Takahashi Y, Takakura Y(2018) Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull 41:835–842
|
239 |
Yao X, Wei W, Wang X
|
240 |
Yokoyama S, Takeuchi A, Yamaguchi S
|
241 |
Yu L-L, Zhu J, Liu J-X
|
242 |
Yu X, Deng L, Wang D
|
243 |
Yuana Y, Oosterkamp TH, Bahatyrova S
|
244 |
Zhang H, Jiang L-H, Hou J-C
|
245 |
Zhang M, Vojtech L, Ye Z
|
246 |
Zhang P, He M, Zeng Y(2016a) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/ polydopamine coating. Lab Chip 16:3033–3042
|
247 |
Zhang W, Yu Z-L, Wu M
|
248 |
Zhang Y, Liu Y, Liu H, Tang WH(2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19
|
249 |
Zhang Y, Yu Z, Jiang D
|
250 |
Zhao Z, Yang Y, Zeng Y, He M(2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489–496
|
251 |
Zhou Q, Rahimian A, Son K
|
252 |
Zhu Q, Heon M, Zhao Z, He M(2018) Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip 18:1690–1703
|
253 |
Zhu Q, Ling X, Yang Y
|
254 |
Zitvogel L, Regnault A, Lozier A
|
255 |
(2018) P30: Uptake of trophoblast extracellular vesicles by neighboring cells. Am J Reprod Immunol 80:71–71
|
/
〈 | 〉 |